Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting atoms that aren’t there, in stars that no longer exist

30.01.2004


Argonne researchers use specialized instrument



Researchers at the U.S. Department of Energy’s Argonne National Laboratory have reached for the stars – and seen what’s inside.

Argonne scientists, in collaboration with colleagues at the University of Chicago, Washington University and the Universita di Torino in Italy, examined stardust from a meteorite and found remnants of now-extinct technetium atoms made in stars long ago.


The stardust grains are tiny bits of stars that lived and died before the solar system formed. Each grain is many times smaller than the width of a human hair, and carries a chemical record of nuclear reactions in its parent star.

Famed scientist P.W. Merrill fifty years ago observed the signature of live technetium - an element that has no stable isotopes - in the starlight from certain types of stars, thereby proving the then-controversial theory that stars make atoms via a process called nucleosynthesis. The researchers’ discovery that their stardust grains once harbored live technetium brings the science of nucleosynthesis full circle.

"Finding traces of technetium decay products in stardust provides a very precise confirmation of the theories of how atoms are made inside stars," said Michael Savina, Argonne scientist and the lead author on the research, which is published today in Science. "The fact that we can both predict and measure very tiny effects in the chemistry of these grains gives us a lot of confidence in our models of how stars work."

Authors on the report, in addition to Savina, are Michael Pellin and C. Emil Tripa of Argonne, Andrew M. Davis and Roy S. Lewis of the University of Chicago, Sachiko Amari of Washington University in St. Louis, and Roberto Gallino of Universita di Torino in Italy. Funding was provided by the U.S. Department of Energy Office of Science, the University of Chicago, NASA, and the Italian FIRB Progetto Origine Astrofisica degli Elementi Pesanti Oltre il Ferro.

The work was made possible by a specialized instrument at Argonne called CHARISMA, the only instrument of its type in the world. "CHARISMA is designed to analyze very tiny samples – the kind where you can’t afford to waste atoms, because there are so few of them to work with," Savina said.

CHARISMA is presently being upgraded, with funding from the Department of Energy Office of Science and from NASA, in anticipation of samples from the Genesis mission to collect samples of the solar wind – single atoms and electrically charged particles from the sun – which scientists believe hasn’t changed since the sun was born.

The research group at Argonne will be among the scientists to analyze the samples in an effort to better understand how the planets formed. Current measurements of the sun’s composition are not precise enough to answer key questions about events in the early solar system. The researchers are also preparing to analyze samples from the Stardust mission, which recently captured dust grains from a comet’s tail and will bring them back to Earth in 2006.


The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. The University of Chicago operates Argonne as part of the U.S. Department of Energy’s national laboratory system.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>