Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting atoms that aren’t there, in stars that no longer exist

30.01.2004


Argonne researchers use specialized instrument



Researchers at the U.S. Department of Energy’s Argonne National Laboratory have reached for the stars – and seen what’s inside.

Argonne scientists, in collaboration with colleagues at the University of Chicago, Washington University and the Universita di Torino in Italy, examined stardust from a meteorite and found remnants of now-extinct technetium atoms made in stars long ago.


The stardust grains are tiny bits of stars that lived and died before the solar system formed. Each grain is many times smaller than the width of a human hair, and carries a chemical record of nuclear reactions in its parent star.

Famed scientist P.W. Merrill fifty years ago observed the signature of live technetium - an element that has no stable isotopes - in the starlight from certain types of stars, thereby proving the then-controversial theory that stars make atoms via a process called nucleosynthesis. The researchers’ discovery that their stardust grains once harbored live technetium brings the science of nucleosynthesis full circle.

"Finding traces of technetium decay products in stardust provides a very precise confirmation of the theories of how atoms are made inside stars," said Michael Savina, Argonne scientist and the lead author on the research, which is published today in Science. "The fact that we can both predict and measure very tiny effects in the chemistry of these grains gives us a lot of confidence in our models of how stars work."

Authors on the report, in addition to Savina, are Michael Pellin and C. Emil Tripa of Argonne, Andrew M. Davis and Roy S. Lewis of the University of Chicago, Sachiko Amari of Washington University in St. Louis, and Roberto Gallino of Universita di Torino in Italy. Funding was provided by the U.S. Department of Energy Office of Science, the University of Chicago, NASA, and the Italian FIRB Progetto Origine Astrofisica degli Elementi Pesanti Oltre il Ferro.

The work was made possible by a specialized instrument at Argonne called CHARISMA, the only instrument of its type in the world. "CHARISMA is designed to analyze very tiny samples – the kind where you can’t afford to waste atoms, because there are so few of them to work with," Savina said.

CHARISMA is presently being upgraded, with funding from the Department of Energy Office of Science and from NASA, in anticipation of samples from the Genesis mission to collect samples of the solar wind – single atoms and electrically charged particles from the sun – which scientists believe hasn’t changed since the sun was born.

The research group at Argonne will be among the scientists to analyze the samples in an effort to better understand how the planets formed. Current measurements of the sun’s composition are not precise enough to answer key questions about events in the early solar system. The researchers are also preparing to analyze samples from the Stardust mission, which recently captured dust grains from a comet’s tail and will bring them back to Earth in 2006.


The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. The University of Chicago operates Argonne as part of the U.S. Department of Energy’s national laboratory system.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>