Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new window for the study of exotic atomic nuclei.

29.01.2004


On Friday the 30th, during the XLII international winter meeting on nuclear physics at Bormio, the first results will be announced of Finuda experiment (Nuclear Physics at Daphne), settled in Frascati at Infn National Laboratories.



Planned and made operating by a group of about forty physicists from Universities and Infn Sites of Bari, Brescia, Frascati, Pavia, Torino and Trieste, Finuda is devoted to the study of hypernuclei: nuclei composed by three different kinds of particles rather then two (protons and neutrons) as in ordinary nuclei.

The first stage of the experiment started on October the15th and the data obtained up to now promise to be the most relevant in the study of hypernuclei since their discovery occurred in 1953 thanks to the Polish physicists Marian Danysz e Jerzy Pnieswski. “The study of hypernuclei opens a favoured window to understand some aspects of the strong force and the weak force which, with electromagnetic and gravitational forces, complete the whole of the four fundamental forces in nature” says Sergio Bertolucci, director of the National Laboratories of Frascati.


Hypernuclei are the result of an alteration of a normal atomic nucleus, obtained hitting an ordinary nucleus through a particle named K meson. In the collision between K mesons and nucleus, one of the particles that composes the nucleus, that is to say a proton or a neutron, is substituted by another particle named lambda. While protons and neutrons are composed by such quarks named up and down, the lambda particle contains a third type of quark named strange. This one is provided with a greater mass rather than the one of up quark and down and it is considered it was plentiful in the very first instants of universe life.

New information about the structure of atomic nuclei can be obtained studying the way the lambda particle localizes inside nucleus. Protons and neutrons are in fact joined inside nucleus by the so-called strong force, but they go through the effects of Pauli exclusion principle, which prevents identical particles, such as two protons or two neutrons, from locating inside nucleus in the same energy level (energy levels depend on how near to the centre of nucleus they are). But in a hypernucleus there is only one lambda particle, so it is free from the effects of exclusion principle and when it localizes inside nucleus, it is subject only to the strong nuclear force.

A second kind of interesting information comes from the fact that the lambda particle is unstable: it tends to decay in a very short time, retransforming itself in a proton or a neutron. This is due to the weak interaction: one of the four fundamental forces, the same which origins the natural radioactivity.

Nevertheless, if the lambda particle is embedded in the nucleus, the presence of protons and neutrons and the Pauli principle prevent it from decaying in the usual ways. Therefore, it must interact with the other components of the nucleus before retransforming in a proton or a neutron. It’s just studying these mechanisms that Finuda can clear up some aspects of the weak interaction till now unexplored.

“Finuda has been planned to study both formation of hypernuclei and their decaying and this makes it an innovative experiment”, says Tullio Bressani, national spokesman of Finuda experiment.

The hypernuclei studied by Finuda are produced thanks to the accelerator named Dafne at Frascati National Laboratories. Dafne permits collisions between electrons and positrons creating, as a final product of a series of transformations, the K mesons.

“Despite the great interest of hypernuclei study, it proceeded slowly until some years ago, because of the great difficulties occurred in producing a satisfactory number of them” explains Tullio Bressani, “foreign laboratories, in the United States and above all in Japan, have recently made a notable experimental effort in this research field, but even more significant has been the one made in Italy at Frascati National Laboratories of Infn.

The only initial phase of data recording, which will continue for about three months, will allow to produce many hundreds of thousands of hypernuclei, more or less the same quantity obtained and observed in the first fifty years since their discovery”. The success of the experiment is also a success of Italian research: “Finuda is attracting to our country, and in particular to the laboratories of Frascati, the best researchers in the world in the field of hypernuclei physics”, concludes Sergio Bertolucci.

Barbara Gallavotti | alfa
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>