Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new window for the study of exotic atomic nuclei.

29.01.2004


On Friday the 30th, during the XLII international winter meeting on nuclear physics at Bormio, the first results will be announced of Finuda experiment (Nuclear Physics at Daphne), settled in Frascati at Infn National Laboratories.



Planned and made operating by a group of about forty physicists from Universities and Infn Sites of Bari, Brescia, Frascati, Pavia, Torino and Trieste, Finuda is devoted to the study of hypernuclei: nuclei composed by three different kinds of particles rather then two (protons and neutrons) as in ordinary nuclei.

The first stage of the experiment started on October the15th and the data obtained up to now promise to be the most relevant in the study of hypernuclei since their discovery occurred in 1953 thanks to the Polish physicists Marian Danysz e Jerzy Pnieswski. “The study of hypernuclei opens a favoured window to understand some aspects of the strong force and the weak force which, with electromagnetic and gravitational forces, complete the whole of the four fundamental forces in nature” says Sergio Bertolucci, director of the National Laboratories of Frascati.


Hypernuclei are the result of an alteration of a normal atomic nucleus, obtained hitting an ordinary nucleus through a particle named K meson. In the collision between K mesons and nucleus, one of the particles that composes the nucleus, that is to say a proton or a neutron, is substituted by another particle named lambda. While protons and neutrons are composed by such quarks named up and down, the lambda particle contains a third type of quark named strange. This one is provided with a greater mass rather than the one of up quark and down and it is considered it was plentiful in the very first instants of universe life.

New information about the structure of atomic nuclei can be obtained studying the way the lambda particle localizes inside nucleus. Protons and neutrons are in fact joined inside nucleus by the so-called strong force, but they go through the effects of Pauli exclusion principle, which prevents identical particles, such as two protons or two neutrons, from locating inside nucleus in the same energy level (energy levels depend on how near to the centre of nucleus they are). But in a hypernucleus there is only one lambda particle, so it is free from the effects of exclusion principle and when it localizes inside nucleus, it is subject only to the strong nuclear force.

A second kind of interesting information comes from the fact that the lambda particle is unstable: it tends to decay in a very short time, retransforming itself in a proton or a neutron. This is due to the weak interaction: one of the four fundamental forces, the same which origins the natural radioactivity.

Nevertheless, if the lambda particle is embedded in the nucleus, the presence of protons and neutrons and the Pauli principle prevent it from decaying in the usual ways. Therefore, it must interact with the other components of the nucleus before retransforming in a proton or a neutron. It’s just studying these mechanisms that Finuda can clear up some aspects of the weak interaction till now unexplored.

“Finuda has been planned to study both formation of hypernuclei and their decaying and this makes it an innovative experiment”, says Tullio Bressani, national spokesman of Finuda experiment.

The hypernuclei studied by Finuda are produced thanks to the accelerator named Dafne at Frascati National Laboratories. Dafne permits collisions between electrons and positrons creating, as a final product of a series of transformations, the K mesons.

“Despite the great interest of hypernuclei study, it proceeded slowly until some years ago, because of the great difficulties occurred in producing a satisfactory number of them” explains Tullio Bressani, “foreign laboratories, in the United States and above all in Japan, have recently made a notable experimental effort in this research field, but even more significant has been the one made in Italy at Frascati National Laboratories of Infn.

The only initial phase of data recording, which will continue for about three months, will allow to produce many hundreds of thousands of hypernuclei, more or less the same quantity obtained and observed in the first fifty years since their discovery”. The success of the experiment is also a success of Italian research: “Finuda is attracting to our country, and in particular to the laboratories of Frascati, the best researchers in the world in the field of hypernuclei physics”, concludes Sergio Bertolucci.

Barbara Gallavotti | alfa
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>