Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dazzling Halos illuminate our dusty Galaxy

26.01.2004


The discovery of a unique phenomenon: a beautiful set of expanding X-ray halos surrounding a gamma-ray burst which have never been seen before, (see Movie link at end), has been announced by an international team of astronomers led by Dr Simon Vaughan of the University of Leicester. The research has been accepted for publication in the Astrophysical Journal.



Gamma-ray bursts (GRB) are the most energetic form of radiation in the Universe and can be used to probe any material between Earth and the burst. In this case, the GRB lies behind the plane of our Galaxy, so its light has to travel through the gas and dust in the Galactic disc to reach us.

ESA’s gamma ray observatory satellite ’Integral’ detected the 30 second long GRB 031203 on December 3rd 2003 and the halos were discovered in a follow-up observation that started 6 hours after the burst with ESA’s ’XMM-Newton’ X-ray space telescope.


Commenting on the discovery, Professor Ian Halliday, Chief Executive of the UK’s Particle Physics and Astronomy Research Council (PPARC) said “Gamma-ray bursts are the most violent events in the Universe. Unlike the serene beauty of the stars that we can see with our eyes, the Gamma Ray Universe is a place of dramatic explosions, cosmic collisions and matter being sucked into black holes.”

Halliday added “This is a wonderful example of two of ESA’s most advanced observatories in which UK scientists have made a significant contribution, working in harmony to reveal a new level of scientific understanding.”

The fading X-ray emission from the GRB - the afterglow - is clearly seen in the image from the X-ray cameras on XMM-Newton. Uniquely, two rings centred on the afterglow were also seen. Dr Vaughan said "These rings are due to dust in our own Galaxy which is illuminated by the X-rays from the gamma-ray burst. The dust scatters some of the X-rays causing the rings, in the same way as fog scatters the light from a car’s headlights." He added "It’s like a shout in a cathedral; the shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is more beautiful."

Due to the finite speed of light, X-rays from more distant dust reach us later, giving rise to the appearance of expanding rings. Dr Vaughan said "We expect to see an expanding ring on the sky if the dust is in a sheet roughly in the plane of the sky, but as we see two rings there must be two dust sheets between us and the GRB. Understanding how dust is distributed in our Galaxy is important. Dust helps cool gas clouds which can then collapse to form stars and planets. Knowing where dust is located helps astronomers determine where star and planet formation is likely to occur."

Expanding X-ray dust scattering rings have never been seen before. Slower moving rings seen in visible light around a very few supernovae are caused by a similar effect.

The two halos are due to thin sheets of dust at 2,900 and 4,500 light-years away; the astronomers accurately measured the distances from the expansion rate of the halos. The distances have an uncertainty of just 2%, a remarkable level of accuracy for an object in our Galaxy. The nearest dust sheet is probably part of the Gum nebula, a bubble of hot gas resulting from many supernova explosions. The GRB itself is thought to have occurred in a small galaxy about a billion light-years away (one of the closest GRB galaxies).

Astronomers are still trying to understand the mysterious gamma-ray bursts. Some occur with the supernova explosion of a massive star when it has used up all of its fuel, although only stars which have lost their outer layers and which collapse to make a black hole seem able to make a GRB.

Today Integral and XMM-Newton provide astronomers with their most powerful facilities for studying gamma-ray bursts, but 2004 will see the launch of "Swift", a new NASA mission with major UK involvement, which will be dedicated to GRBs. This will work in concert with the two ESA satellite observatories, providing more opportunities for discoveries in this cutting edge field. UK participation in Integral, XMM-Newton and Swift is funded by the Particle Physics and Astronomy Research Council.

Julia Maddock | PPARC
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>