Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A possible new form of ’supersolid’ matter

15.01.2004


Frozen helium-4 behaves like a combination of solid and superfluid



Researchers at the Pennsylvania State University are announcing the possible discovery of an entirely new phase of matter: an ultra-cold, "supersolid" form of helium-4.

Writing in the 15 January 2004 issue of the journal Nature, Penn State physicist Moses H. W. Chan and his graduate student, Eun-Seong Kim, explain that their material is a solid in the sense that all its helium-4 atoms are frozen into a rigid crystal lattice, much like the atoms and molecules in a normal solid such as ice. The difference is that "frozen," in this case, doesn’t mean "stationary." Because helium-4 lattice is so very cold, less than one tenth of a degree above absolute zero, the laws of quantum uncertainty take over. In effect, the helium atoms start to behave as if they were both solid and fluid--at the same time. Under the right circumstances, in fact, some fraction of the helium atoms can begin to move through the lattice like a substance known as a "superfluid": a liquid that moves with no friction whatsoever. Thus the name "supersolid."


Chan and Kim’s work, which was funded by the National Science Foundation (NSF), is described in a Penn State press release posted on the EurekAlert site. That site has an embargo of 1 pm Eastern time, 14 January 2004. After that time, the release will also be available at http://www.science.psu.edu/alert/Chan1-2004.htm.

In addition, NSF has prepared an animation that illustrates the basics of Chan and Kim’s experimental setup, and the supersolid behavior they believe they have detected.


Program contact: Hollis Wickman, 703-292-4929, hwickman@nsf.gov.
Principal Investigator: Moses H.W. Chan, 814-863-2622, Mhc2@psu.edu.

Mitch Waldrop | National Science Foundation
Further information:
http://www.science.psu.edu/alert/Chan1-2004.htm
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>