Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A possible new form of ’supersolid’ matter

15.01.2004


Frozen helium-4 behaves like a combination of solid and superfluid



Researchers at the Pennsylvania State University are announcing the possible discovery of an entirely new phase of matter: an ultra-cold, "supersolid" form of helium-4.

Writing in the 15 January 2004 issue of the journal Nature, Penn State physicist Moses H. W. Chan and his graduate student, Eun-Seong Kim, explain that their material is a solid in the sense that all its helium-4 atoms are frozen into a rigid crystal lattice, much like the atoms and molecules in a normal solid such as ice. The difference is that "frozen," in this case, doesn’t mean "stationary." Because helium-4 lattice is so very cold, less than one tenth of a degree above absolute zero, the laws of quantum uncertainty take over. In effect, the helium atoms start to behave as if they were both solid and fluid--at the same time. Under the right circumstances, in fact, some fraction of the helium atoms can begin to move through the lattice like a substance known as a "superfluid": a liquid that moves with no friction whatsoever. Thus the name "supersolid."


Chan and Kim’s work, which was funded by the National Science Foundation (NSF), is described in a Penn State press release posted on the EurekAlert site. That site has an embargo of 1 pm Eastern time, 14 January 2004. After that time, the release will also be available at http://www.science.psu.edu/alert/Chan1-2004.htm.

In addition, NSF has prepared an animation that illustrates the basics of Chan and Kim’s experimental setup, and the supersolid behavior they believe they have detected.


Program contact: Hollis Wickman, 703-292-4929, hwickman@nsf.gov.
Principal Investigator: Moses H.W. Chan, 814-863-2622, Mhc2@psu.edu.

Mitch Waldrop | National Science Foundation
Further information:
http://www.science.psu.edu/alert/Chan1-2004.htm
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>