Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chandra locates mother lode of planetary ore in colliding galaxies

08.01.2004


NASA’s Chandra X-ray Observatory has discovered rich deposits of neon, magnesium, and silicon in a pair of colliding galaxies known as The Antennae. When the clouds in which these elements are present cool, an exceptionally high number of stars with planets should form. These results may foreshadow the fate of the Milky Way and its future collision with the Andromeda Galaxy.


Chandra image of the Antennae galaxies (NASA/CXC/SAO/G. Fabbiano et al.)



"The amount of enrichment of elements in The Antennae is phenomenal," said Giuseppina Fabbiano of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge , Mass. at a press conference at a meeting of the American Astronomical Society in Atlanta , Ga. "This must be due to a very high rate of supernova explosions in these colliding galaxies." Fabbiano is lead author of a paper on this discovery by a team of U.S. and U.K. scientists that will appear in an upcoming issue of The Astrophysical Journal Letters.

When galaxies collide, direct hits between stars are extremely rare, but collisions between huge gas clouds in the galaxies can trigger a stellar baby boom. The most massive of these stars race through their evolution in a few million years and explode as supernovas. Heavy elements manufactured inside these stars are blown away by the explosions and enrich the surrounding gas for thousands of light years.


"The amount of heavy elements supports earlier studies that indicate there was a very high rate of relatively recent supernovas, 30 times that of the Milky Way," according to collaborator Andreas Zezas of the CfA.

The supernova violence also heats the gas to millions of degrees Celsius. This makes much of the matter in the clouds invisible to optical telescopes, but it can be observed by an X-ray telescope. Chandra data revealed for the first time regions of varying enrichment in the galaxies — in one cloud magnesium and silicon are 16 and 24 times as abundant as in the Sun.

"These are the kinds of elements that form the ultimate building blocks for habitable planets," said Andrew King of the University of Leicester, U.K. and a coauthor of the study. "This process occurs in all galaxies, but it is greatly enhanced by the collision. Usually we only see the new elements in diluted form as they are mixed up with the rest of the interstellar gas."

CfA coauthor Alessandro Baldi commented that, "This is spectacular confirmation of the idea that the basis of chemistry, of planets, and ultimately of life is assembled inside stars and spread through galaxies by supernova explosions,"

As the enriched gas cools, a new generation of stars will form, and with them new planets. A number of studies indicate that clouds enriched in heavy elements are more likely to form stars with planetary systems, so in the future an unusually high number of planets may form in The Antennae.

"If life arises on a significant fraction of these planets, then in the future the Antennae will be teeming with life,” speculated Francois Schweizer, another coauthor who is from the Carnegie Observatories in Pasadena , Calif. "A vast number of Sun like stars and planetary systems will age in unison for billions of years."

At a distance of about 60 million light years, The Antennae system is the nearest example of a collision between two large galaxies. The collision, which began a couple of hundred million years ago, has been so violent that gas and stars from the galaxies have been ejected into the two long arcs that give the system its name. The Chandra image shows spectacular loops of 3-million-degree gas spreading out south of the antennae. "These loops may be carrying out some of the elements dispersed by supernovas into intergalactic space," said Trevor Ponman of Birmingham University , U.K.

The Antennae give a closeup view of the type of collisions that were common in the early universe and likely led to the formation of most of the stars that exist in the universe today. They may also provide a glimpse of the future of our Milky Way Galaxy, which is on a collision course with the Andromeda Galaxy. At the present rate, a crash such as the one now occurring in the Antennae could happen in about 3 billion years. Tremendous gravitational forces will disrupt both galaxies and reform them, probably as a giant elliptical galaxy with hundreds of millions of young Sun like stars, and possibly planetary systems.

NASA’s Marshall Space Flight Center , Huntsville , Ala. , manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach , Calif. , formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge , Mass.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2004/04-003.html
http://chandra.harvard.edu/
http://chandra.nasa.gov/

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>