Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spirit Lands On Mars and Sends Postcards

05.01.2004


A traveling robotic geologist from NASA has landed on Mars and returned stunning images of the area around its landing site in Gusev Crater.


First Look at Spirit at Landing Site

This is one of the first images beamed back to Earth shortly after the Mars Exploration Rover Spirit landed on the red planet.

Image credit: NASA/JPL



Mars Exploration Rover Spirit successfully sent a radio signal after the spacecraft had bounced and rolled for several minutes following its initial impact at 11:35 p.m. EST (8:35 p.m. Pacific Standard Time) on January 3.

"This is a big night for NASA," said NASA Administrator Sean O’Keefe. "We’re back. I am very, very proud of this team, and we’re on Mars."


Members of the mission’s flight team at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., cheered and clapped when they learned that NASA’s Deep Space Network had received a post-landing signal from Spirit. The cheering resumed about three hours later when the rover transmitted its first images to Earth, relaying them through NASA’s Mars Odyssey orbiter.

"We’ve got many steps to go before this mission is over, but we’ve retired a lot of risk with this landing," said JPL’s Pete Theisinger, project manager for the Mars Exploration Rover Project.

Deputy project manager for the rovers, JPL’s Richard Cook, said, "We’re certainly looking forward to Opportunity landing three weeks from now." Opportunity is Spirit’s twin rover, headed for the opposite side of Mars.

Dr. Charles Elachi, JPL director, said, "To achieve this mission, we have assembled the best team of young women and men this country can put together. Essential work was done by other NASA centers and by our industrial and academic partners.

Spirit stopped rolling with its base petal down, though that favorable position could change as airbags deflate, said JPL’s Rob Manning, development manager for the rover’s descent through Mars’ atmosphere and landing on the surface.

NASA chose Spirit’s landing site, within Gusev Crater, based on evidence from Mars orbiters that this crater may have held a lake long ago. A long, deep valley, apparently carved by ancient flows of water, leads into Gusev. The crater itself is basin the size of Connecticut created by an asteroid or comet impact early in Mars’ history. Spirit’s task is to spend the next three months exploring for clues in rocks and soil about whether the past environment at this part of Mars was ever watery and suitable to sustain life.

Spirit traveled 487 million kilometers (302.6 million) miles to reach Mars after its launch from Cape Canaveral Air Force Station, Fla., on June 10, 2003. Its twin, Mars Exploration Rover Opportunity, was launched July 7, 2003, and is on course for a landing on the opposite side of Mars on Jan. 25 (Universal Time and EST; 9:05 p.m. on Jan. 24, PST).

The flight team expects to spend more than a week directing Spirit through a series of steps in unfolding, standing up and other preparations necessary before the rover rolls off of its lander platform to get its wheels onto the ground. Meanwhile, Spirit’s cameras and a mineral-identifying infrared instrument will begin examining the surrounding terrain. That information will help engineers and scientists decide which direction to send the rover first.

JPL, a division of the California Institute of Technology, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington. Additional information about the project is available from JPL at: http://marsrovers.jpl.nasa.gov and from Cornell University, Ithaca, N.Y., at: http://athena.cornell.edu.

| NASA
Further information:
http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040104a.html
http://marsrovers.jpl.nasa.gov
http://athena.cornell.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>