Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major Mars Express Scheduled Orbit Change Successful

30.12.2003


This morning, at 09:00 CET, the first European mission to Mars registered another operational success. The Mars Express flight control team at ESOC prepared and executed another critical manoeuvre, bringing the spacecraft from an equatorial orbit into a polar orbit around Mars.



All commands were transmitted to Mars Express via ESA’s new Deep Space Station in New Norcia, Australia. This morning, the main engine of Mars Express was fired for four minutes to turn the spacecraft into a new direction, at a distance of 188 000 kilometres from Mars and about 160 million kilometres from Earth. On 4 January 2004, this new polar orbit will be reduced even further.

Fascinating ESA science mission ahead


In a polar orbit, Mars Express can now start to prepare its scientific observation mission as planned, working much like an ’Earth-observation satellite’ but around Mars. From the second half of January 2004, the orbiter’s instruments will be able to scan the atmosphere, the surface and parts of the subsurface structure of Mars with unmatched precision.
The MARSIS radar, for example, will be able to scan as far as four kilometres below the surface, looking for underground water or ice. The High Resolution Stereo Camera will take high-precision pictures of the planet and will begin a comprehensive 3D cartography of Mars. Also, several spectrometers will try to unveil the mysteries of Martian mineralogy and the atmosphere, as well as influences from the solar wind or seasonal changes.

Mars Express closes in on Beagle 2 landing area

The change of orbit by the Mars Express orbiter will allow increasingly closer looks at the Beagle 2 landing site, which measures 31 kilometres by 5 kilometres. In this narrowing polar orbit, the orbiter will fly directly over the landing site at an altitude of 315 kilometres on 7 January 2004, at 13:13 CET. The reduced distance, the ideal angle of overflight and originally foreseen communication interfaces between the ’mother’ and ’baby’ will increase the probability of catching signals from the ground.

Ongoing European co-operation and international support

The Mars Express flight control team of ESA in Darmstadt, Germany, is in regular contact with its colleagues of the Beagle 2 team and with NASA ground stations. In addition, ESA receives regular support or offers of support from the Jodrell Bank radio telescope in the UK, Westerborg telescope in the Netherlands, Effelsberg telescope in Germany and Stanford University’s telescope in the USA. ESA is grateful for this spirit of dynamic international co-operation on its first mission to Mars.

Franco Bonacina | ESA
Further information:
http://www.esa.int/export/SPECIALS/Mars_Express/SEM4GC374OD_0.html

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>