Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three Dusty Beauties

22.12.2003


New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

Not so long ago, the real nature of the "spiral nebulae", spiral-shaped objects observed in the sky through telescopes, was still unknown. This long-standing issue was finally settled in 1924 when the famous American astronomer Edwin Hubble provided conclusive evidence that they are located outside our own galaxy and are in fact "island universes" of their own.

Nowadays, we know that the Milky Way is just one of billions of galaxies in the Universe. They come in vastly different shapes - spiral, elliptical, irregular - and many of them are simply beautiful, especially the spiral ones.



Astronomers Mark Neeser from the Universitaets-Sternwarte Muenchen (Germany) and Peter Barthel from the Kapteyn Institute in Groningen (The Netherlands) were clearly not insensitive to this when they obtained images of three beautiful spiral galaxies with ESO’s Very Large Telescope (VLT). They did this in twilight during the early morning when they had to stop their normal observing programme, searching for very distant and faint quasars.

The resulting colour images (ESO PR Photos 33a-c/03) were produced by combining several CCD images in three different wavebands from the FORS multi-mode instruments.

The three galaxies are known as NGC 613, NGC 1792 and NGC 3627. They are characterized by strong far-infrared, as well as radio emission, indicative of substantial ongoing star-formation activity. Indeed, these images all display prominent dust as well as features related to young stars, clear signs of intensive star-formation.

NGC 613

NGC 613 is a beautiful barred spiral galaxy in the southern constellation Sculptor. This galaxy is inclined by 32 degrees and, contrary to most barred spirals, has many arms that give it a tentacular appearance.

Prominent dust lanes are visible along the large-scale bar. Extensive star-formation occurs in this area, at the ends of the bar, and also in the nuclear regions of the galaxy. The gas at the centre, as well as the radio properties are indicative of the presence of a massive black hole in the centre of NGC 613.

NGC 1792

NGC 1792 is located in the southern constellation Columba (The Dove) - almost on the border with the constellation Caelum (The Graving Tool) - and is a so-called starburst spiral galaxy. Its optical appearance is quite chaotic, due to the patchy distribution of dust throughout the disc of this galaxy. It is very rich in neutral hydrogen gas - fuel for the formation of new stars - and is indeed rapidly forming such stars. The galaxy is characterized by unusually luminous far-infrared radiation; this is due to dust heated by young stars.

NGC 3627

The third galaxy is NGC 3627, also known as Messier 66, i.e. it is the 66th object in the famous catalogue of nebulae by French astronomer Charles Messier (1730 - 1817). It is located in the constellation Leo (The Lion).

NGC 3627 is a beautiful spiral with a well-developed central bulge. It also displays large-scale dust lanes. Many regions of warm hydrogen gas are seen throughout the disc of this galaxy. The latter regions are being ionised by radiation from clusters of newborn stars. Very active star-formation is most likely also occurring in the nuclear regions of NGC 3627.

The galaxy forms, together with its neighbours M 65 and NGC 3628, the so-called "Leo Triplet"; they are located at a distance of about 35 million light-years. M 66 is the largest of the three. Its spiral arms appear distorted and displaced above the main plane of the galaxy. The asymmetric appearance is most likely due to gravitational interaction with its neighbours.

Richard West | ESO
Further information:
http://www.eso.org/outreach/press-rel/pr-2003/phot-33-03.html

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>