Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Separation Day Arrives for Mars Express and Beagle 2

19.12.2003


After a joint journey of 250 million miles (400 million km), the British-built Beagle 2 spacecraft and the European Space Agency’s Mars Express orbiter should now have parted and gone their separate ways.



At 8.31 GMT, software on Mars Express was scheduled to send the command for the Beagle 2 lander to separate from the orbiter. This would fire a pyrotechnic device that would slowly release a loaded spring and gently push Beagle 2 away from the mother spacecraft at around 1 ft/s (0.3 m/s).

If all goes according to plan, the release mechanism will also cause Beagle 2 to rotate like a spinning top, stabilising its motion during the final stage of its flight towards Mars.


Since Beagle 2 does not have a propulsion system of its own, it must be carefully targeted at its destination. With Mars Express acting as a champion darts player aiming at a bullseye, Beagle 2 should be placed on a collision course with the planet, following a precise ballistic path that will enable it to hit a specific point at the top of the Martian atmosphere in six days’ time.

Initial confirmation that the separation manoeuvre has been successful is expected at 10.40 GMT, when the European Space Operations Centre (ESOC) in Darmstadt, Germany, should receive X-band telemetry data from Mars Express. Further information from Mars Express and Beagle 2 telemetry confirming separation should be returned by 11.10 GMT.

In addition, it is hoped that the orbiter’s onboard Visual Monitoring Camera (VMC) will provide pictures showing the lander moving slowly away. The images are expected to be available within hours of the separation event.

However, after six months in space, during which the spacecraft were buffeted by solar storms, the manoeuvre is not without risk. Although it has been tested many times on Earth, there is always the outside possibility that something may go wrong during the all-important separation.

Even if the separation is successful, Beagle 2 must rely on its own battery, which cannot last beyond 6 days, until its solar arrays are fully deployed on the surface. This means that Mars Express must release Beagle 2 at the last possible moment in order to ensure that the lander has enough power for the rest of its journey to the rust-red Martian plains.

This will be the first time that an orbiter has delivered a lander without its own propulsion onto a planet and then attempted orbit insertion immediately afterwards.

Meanwhile, Mars Express will follow Beagle 2 for a while until, three days before arrival at Mars, ground controllers will have to fire its thrusters and make it veer away to avoid crashing onto the planet.

Early on 25 December, Beagle 2 should plunge into the atmosphere before parachuting to its planned landing site, a broad basin close to the Martian equator, known as Isidis Planitia. Later that day, Mars Express should enter orbit around Mars.

Beagle 2 has no propulsion system of its own so it is carried to Mars by the Mars Express spacecraft which will go into orbit around the planet for remote sensing purposes.

Gill Ormrod | alfa
Further information:
http://www.beagle2.com
http://www.pparc.ac.uk/Mars
http://www.esa.int/mars

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>