Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Separation Day Arrives for Mars Express and Beagle 2

19.12.2003


After a joint journey of 250 million miles (400 million km), the British-built Beagle 2 spacecraft and the European Space Agency’s Mars Express orbiter should now have parted and gone their separate ways.



At 8.31 GMT, software on Mars Express was scheduled to send the command for the Beagle 2 lander to separate from the orbiter. This would fire a pyrotechnic device that would slowly release a loaded spring and gently push Beagle 2 away from the mother spacecraft at around 1 ft/s (0.3 m/s).

If all goes according to plan, the release mechanism will also cause Beagle 2 to rotate like a spinning top, stabilising its motion during the final stage of its flight towards Mars.


Since Beagle 2 does not have a propulsion system of its own, it must be carefully targeted at its destination. With Mars Express acting as a champion darts player aiming at a bullseye, Beagle 2 should be placed on a collision course with the planet, following a precise ballistic path that will enable it to hit a specific point at the top of the Martian atmosphere in six days’ time.

Initial confirmation that the separation manoeuvre has been successful is expected at 10.40 GMT, when the European Space Operations Centre (ESOC) in Darmstadt, Germany, should receive X-band telemetry data from Mars Express. Further information from Mars Express and Beagle 2 telemetry confirming separation should be returned by 11.10 GMT.

In addition, it is hoped that the orbiter’s onboard Visual Monitoring Camera (VMC) will provide pictures showing the lander moving slowly away. The images are expected to be available within hours of the separation event.

However, after six months in space, during which the spacecraft were buffeted by solar storms, the manoeuvre is not without risk. Although it has been tested many times on Earth, there is always the outside possibility that something may go wrong during the all-important separation.

Even if the separation is successful, Beagle 2 must rely on its own battery, which cannot last beyond 6 days, until its solar arrays are fully deployed on the surface. This means that Mars Express must release Beagle 2 at the last possible moment in order to ensure that the lander has enough power for the rest of its journey to the rust-red Martian plains.

This will be the first time that an orbiter has delivered a lander without its own propulsion onto a planet and then attempted orbit insertion immediately afterwards.

Meanwhile, Mars Express will follow Beagle 2 for a while until, three days before arrival at Mars, ground controllers will have to fire its thrusters and make it veer away to avoid crashing onto the planet.

Early on 25 December, Beagle 2 should plunge into the atmosphere before parachuting to its planned landing site, a broad basin close to the Martian equator, known as Isidis Planitia. Later that day, Mars Express should enter orbit around Mars.

Beagle 2 has no propulsion system of its own so it is carried to Mars by the Mars Express spacecraft which will go into orbit around the planet for remote sensing purposes.

Gill Ormrod | alfa
Further information:
http://www.beagle2.com
http://www.pparc.ac.uk/Mars
http://www.esa.int/mars

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>