Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Separation Day Arrives for Mars Express and Beagle 2

19.12.2003


After a joint journey of 250 million miles (400 million km), the British-built Beagle 2 spacecraft and the European Space Agency’s Mars Express orbiter should now have parted and gone their separate ways.



At 8.31 GMT, software on Mars Express was scheduled to send the command for the Beagle 2 lander to separate from the orbiter. This would fire a pyrotechnic device that would slowly release a loaded spring and gently push Beagle 2 away from the mother spacecraft at around 1 ft/s (0.3 m/s).

If all goes according to plan, the release mechanism will also cause Beagle 2 to rotate like a spinning top, stabilising its motion during the final stage of its flight towards Mars.


Since Beagle 2 does not have a propulsion system of its own, it must be carefully targeted at its destination. With Mars Express acting as a champion darts player aiming at a bullseye, Beagle 2 should be placed on a collision course with the planet, following a precise ballistic path that will enable it to hit a specific point at the top of the Martian atmosphere in six days’ time.

Initial confirmation that the separation manoeuvre has been successful is expected at 10.40 GMT, when the European Space Operations Centre (ESOC) in Darmstadt, Germany, should receive X-band telemetry data from Mars Express. Further information from Mars Express and Beagle 2 telemetry confirming separation should be returned by 11.10 GMT.

In addition, it is hoped that the orbiter’s onboard Visual Monitoring Camera (VMC) will provide pictures showing the lander moving slowly away. The images are expected to be available within hours of the separation event.

However, after six months in space, during which the spacecraft were buffeted by solar storms, the manoeuvre is not without risk. Although it has been tested many times on Earth, there is always the outside possibility that something may go wrong during the all-important separation.

Even if the separation is successful, Beagle 2 must rely on its own battery, which cannot last beyond 6 days, until its solar arrays are fully deployed on the surface. This means that Mars Express must release Beagle 2 at the last possible moment in order to ensure that the lander has enough power for the rest of its journey to the rust-red Martian plains.

This will be the first time that an orbiter has delivered a lander without its own propulsion onto a planet and then attempted orbit insertion immediately afterwards.

Meanwhile, Mars Express will follow Beagle 2 for a while until, three days before arrival at Mars, ground controllers will have to fire its thrusters and make it veer away to avoid crashing onto the planet.

Early on 25 December, Beagle 2 should plunge into the atmosphere before parachuting to its planned landing site, a broad basin close to the Martian equator, known as Isidis Planitia. Later that day, Mars Express should enter orbit around Mars.

Beagle 2 has no propulsion system of its own so it is carried to Mars by the Mars Express spacecraft which will go into orbit around the planet for remote sensing purposes.

Gill Ormrod | alfa
Further information:
http://www.beagle2.com
http://www.pparc.ac.uk/Mars
http://www.esa.int/mars

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>