Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Separation Day Arrives for Mars Express and Beagle 2

19.12.2003


After a joint journey of 250 million miles (400 million km), the British-built Beagle 2 spacecraft and the European Space Agency’s Mars Express orbiter should now have parted and gone their separate ways.



At 8.31 GMT, software on Mars Express was scheduled to send the command for the Beagle 2 lander to separate from the orbiter. This would fire a pyrotechnic device that would slowly release a loaded spring and gently push Beagle 2 away from the mother spacecraft at around 1 ft/s (0.3 m/s).

If all goes according to plan, the release mechanism will also cause Beagle 2 to rotate like a spinning top, stabilising its motion during the final stage of its flight towards Mars.


Since Beagle 2 does not have a propulsion system of its own, it must be carefully targeted at its destination. With Mars Express acting as a champion darts player aiming at a bullseye, Beagle 2 should be placed on a collision course with the planet, following a precise ballistic path that will enable it to hit a specific point at the top of the Martian atmosphere in six days’ time.

Initial confirmation that the separation manoeuvre has been successful is expected at 10.40 GMT, when the European Space Operations Centre (ESOC) in Darmstadt, Germany, should receive X-band telemetry data from Mars Express. Further information from Mars Express and Beagle 2 telemetry confirming separation should be returned by 11.10 GMT.

In addition, it is hoped that the orbiter’s onboard Visual Monitoring Camera (VMC) will provide pictures showing the lander moving slowly away. The images are expected to be available within hours of the separation event.

However, after six months in space, during which the spacecraft were buffeted by solar storms, the manoeuvre is not without risk. Although it has been tested many times on Earth, there is always the outside possibility that something may go wrong during the all-important separation.

Even if the separation is successful, Beagle 2 must rely on its own battery, which cannot last beyond 6 days, until its solar arrays are fully deployed on the surface. This means that Mars Express must release Beagle 2 at the last possible moment in order to ensure that the lander has enough power for the rest of its journey to the rust-red Martian plains.

This will be the first time that an orbiter has delivered a lander without its own propulsion onto a planet and then attempted orbit insertion immediately afterwards.

Meanwhile, Mars Express will follow Beagle 2 for a while until, three days before arrival at Mars, ground controllers will have to fire its thrusters and make it veer away to avoid crashing onto the planet.

Early on 25 December, Beagle 2 should plunge into the atmosphere before parachuting to its planned landing site, a broad basin close to the Martian equator, known as Isidis Planitia. Later that day, Mars Express should enter orbit around Mars.

Beagle 2 has no propulsion system of its own so it is carried to Mars by the Mars Express spacecraft which will go into orbit around the planet for remote sensing purposes.

Gill Ormrod | alfa
Further information:
http://www.beagle2.com
http://www.pparc.ac.uk/Mars
http://www.esa.int/mars

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>