Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Orbiting observatory detects organic chemistry in one of the most luminous galaxies ever found


An instrument aboard NASA’s recently launched orbiting infrared observatory has found evidence of organic molecules in an enormously powerful galaxy some 3.25 billion light years from the Earth. So powerful is the source, that it is equal to 10 trillion times the luminosity of the sun, making it one of the brightest galaxies ever detected.

The instrument on the newly named Spitzer Space Telescope (previously called the Space Infrared Telescope Facility, or SIRTF) is the infrared spectrograph, or IRS. James Houck, professor of astronomy at Cornell University, heads the scientific team on the $39 million IRS contract with the Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology, manager of the mission for NASA.

Houck participated in a press conference at NASA headquarters in Washington, D.C., today (Dec. 18) at which the first observations and data from the half-billion-dollar observatory, launched Aug. 25, were released. Among the most spectacular details released were dazzling images taken with the space telescope’s infrared-array camera and with its multiband-imaging photometer. The images include a glowing stellar nursery; a swirling, dusty galaxy; a disc of planet-forming debris; and organic material in the distant universe.

The IRS, one of three instruments carried by the space telescope, is the most sensitive infrared spectrograph ever to go into space. In less than 15 minutes it produced a spectrum of the distant galaxy IRAS 00183, first observed by the infrared astronomical satellite (IRAS) in 1983. The spectrum "gives evidence for organic chemistry in a distant galaxy shortly after the formation of the Earth," says Houck. (While the Spitzer observatory’s cameras take infrared snapshots of distant galaxies and dust clouds, and objects too cool to emit visible light, the IRS determines their precise infrared colors. Astronomers are then able to read the peaks and valleys in the spectrum, called emission and absorption lines, to determine the chemical mix of the object being observed.)

In an optical image, the IRAS galaxy appears as no more than a faint smudge. But the IRS spectrum -- the first detailed look at the galaxy -- shows a broad silicate feature. The dominant absorber of visible energy is tiny silicate dust particles. The silicate dust is so opaque that only a small percentage of the visible light escapes the galaxy, says Houck.

"We are seeing the merger of two galaxies. This produces one of two effects: Either what we are seeing is a brief flash of incredibly strong star formation, or one or both of the galaxies contained a black hole before colliding. The massive black holes are releasing the energy by swallowing stars and gas," says Houck. In both cases, he says, the collision would compress gas that would trigger the star formation or the release of energy from the black hole, a process called "feeding the monster."

Both scenarios have problems, Houck concedes. "One is, how do you get enough gas close enough to a black hole to make all this happen? And how do you get stars to form so quickly all at the same time?"

Houck’s IRS team also released a spectrum of HH46IR, a "dusty, dirty cloud" in our galaxy, the Milky Way, that visible light is unable to penetrate. The spectrum shows the cloud to be a region of star formation containing organic materials, including methyl alcohol, carbon dioxide ice and carbon monoxide gas and ice.

Houck also notes that the IRS is "working well" and is likely to be "a workhorse for years to come." During November, he relates, the instrument was subject to a massive proton "storm" in space, with 1.6 billion atomic particles (mostly protons) bombarding a square centimeter of the instrument in just two days. "It was a staggering event," he says.

David Brand | Cornell News
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>