Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orbiting observatory detects organic chemistry in one of the most luminous galaxies ever found

19.12.2003


An instrument aboard NASA’s recently launched orbiting infrared observatory has found evidence of organic molecules in an enormously powerful galaxy some 3.25 billion light years from the Earth. So powerful is the source, that it is equal to 10 trillion times the luminosity of the sun, making it one of the brightest galaxies ever detected.



The instrument on the newly named Spitzer Space Telescope (previously called the Space Infrared Telescope Facility, or SIRTF) is the infrared spectrograph, or IRS. James Houck, professor of astronomy at Cornell University, heads the scientific team on the $39 million IRS contract with the Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology, manager of the mission for NASA.

Houck participated in a press conference at NASA headquarters in Washington, D.C., today (Dec. 18) at which the first observations and data from the half-billion-dollar observatory, launched Aug. 25, were released. Among the most spectacular details released were dazzling images taken with the space telescope’s infrared-array camera and with its multiband-imaging photometer. The images include a glowing stellar nursery; a swirling, dusty galaxy; a disc of planet-forming debris; and organic material in the distant universe.


The IRS, one of three instruments carried by the space telescope, is the most sensitive infrared spectrograph ever to go into space. In less than 15 minutes it produced a spectrum of the distant galaxy IRAS 00183, first observed by the infrared astronomical satellite (IRAS) in 1983. The spectrum "gives evidence for organic chemistry in a distant galaxy shortly after the formation of the Earth," says Houck. (While the Spitzer observatory’s cameras take infrared snapshots of distant galaxies and dust clouds, and objects too cool to emit visible light, the IRS determines their precise infrared colors. Astronomers are then able to read the peaks and valleys in the spectrum, called emission and absorption lines, to determine the chemical mix of the object being observed.)

In an optical image, the IRAS galaxy appears as no more than a faint smudge. But the IRS spectrum -- the first detailed look at the galaxy -- shows a broad silicate feature. The dominant absorber of visible energy is tiny silicate dust particles. The silicate dust is so opaque that only a small percentage of the visible light escapes the galaxy, says Houck.

"We are seeing the merger of two galaxies. This produces one of two effects: Either what we are seeing is a brief flash of incredibly strong star formation, or one or both of the galaxies contained a black hole before colliding. The massive black holes are releasing the energy by swallowing stars and gas," says Houck. In both cases, he says, the collision would compress gas that would trigger the star formation or the release of energy from the black hole, a process called "feeding the monster."

Both scenarios have problems, Houck concedes. "One is, how do you get enough gas close enough to a black hole to make all this happen? And how do you get stars to form so quickly all at the same time?"

Houck’s IRS team also released a spectrum of HH46IR, a "dusty, dirty cloud" in our galaxy, the Milky Way, that visible light is unable to penetrate. The spectrum shows the cloud to be a region of star formation containing organic materials, including methyl alcohol, carbon dioxide ice and carbon monoxide gas and ice.

Houck also notes that the IRS is "working well" and is likely to be "a workhorse for years to come." During November, he relates, the instrument was subject to a massive proton "storm" in space, with 1.6 billion atomic particles (mostly protons) bombarding a square centimeter of the instrument in just two days. "It was a staggering event," he says.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Dec03/Spitzer.Houck.deb.html
http://sirtf.caltech.edu/
http://www.news.cornell.edu/releases/SIRTF/

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>