Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lehigh group reports best threshold values for near-infrared range InGaAsN lasers

16.12.2003


The ink was hardly dry on his new contract as assistant professor of electrical and computer engineering at Lehigh, when Nelson Tansu announced a breakthrough in his research into high-performance lasers.




In two recent issues of Applied Physics Letters (APL) - on July 7 and Sept. 29, Tansu and other collaborating researchers reported the best threshold values to date for near-infrared-range (with an emission wavelength of 1300-nm), indium-gallium-arsenide-nitride (InGaAsN) lasers emitting from a quantum well.

Tansu’s group also achieved the best threshold values yet for near-infrared-range quantum-well (QW) lasers operating under continuous-wave conditions at temperatures up to 100 degrees C.


The work of Tansu’s group was featured in the September issue of LaserFocusWorld, a photonics and optoelectronics industry journal.

One month later, on Oct. 10, Tansu was featured in the cover article of GATRA, the second-most widely circulated weekly news magazine in Indonesia (population 250 million), where Tansu was born and raised. The article described five Indonesians who are employed as university professors outside Indonesia.

The first APL article, titled "High-performance and high-temperature continuous-wave-operation 1300-nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy," is one of eleven journal and conference papers Tansu has published since joining the Lehigh faculty.

The other articles have appeared in several APLs, IEEE’s Journal of Quantum Electronics, IEEE’s Journal of Selected Topics in Quantum Electronics, the Proceedings of the 16th IEEE Laser and Electro Optics Society Annual Meeting (2003), and other journals and conference proceedings. Tansu has also been invited to write a review paper on the physics and devices of dilute nitride lasers for an issue of the IOP’s Journal of Physics: Condensed Matter Physics in 2004.

The general goal of Tansu’s work is to use metal organic chemical vapor deposition (MOCVD) to develop lasers and advanced compound semiconductor nanostructures for optoelectronic devices. His research interests are also related to combining these semiconductor nanostructures with photonic crystals (artificial structures with periodicity of certain optical properties), to realize novel optoelectronic devices. His work has applications in optical communications, mid-infrared devices, free-space communications, visible light sources, information sciences, and biochemical detection.

Tansu says the criteria for high-performance lasers include low operating current, high efficiency, the ability to operate at high speeds at a range of temperatures (from room temperature to 100 degrees C.), and the ability to operate at high temperatures without the need for costly additional electronics to maintain thermal stability.

One type of laser with which Tansu works is high-performance VCSELs, or vertical cavity surface-emitting lasers, which are cheap to produce and operate at a low current. VCSELs are used in short-haul communications systems, which operate with an 850-nm wavelength, allow a transmission range of about 200-500 meters and are typically used in university campuses, offices, residential complexes, and similar venues.

The accomplishments by Tansu’s group have the potential to lead to the realization of low-cost and high-performance 1300-nm VCSELs, capable of a transmission rate of 10 gigabytes per second. Tansu’s group is one of the first to realize high-performance near-infrared range InGaAsN quantum wells by using MOCVD technology, which is the technology of choice to realize VCSELs in manufacturing. Near-infrared range lasers, which operate with a 1300-nm wavelength, allow a transmission range of 20 to 100 kilometers and are also called metropolitan optical networks because they can connect cities that are in close proximity.

The group achieved its breakthrough using InGaAsN, a new lasing material also known as dilute-nitride, on a gallium-arsenide substrate, instead of the conventional approach based on indium-phosphide technology.

"Using dilute-nitride grown on a gallium-arsenide base," says Tansu, "it is much easier to make the high-performance reflectors that are critical to achieving high-performance VCSELs. We accomplished this by using MOCVD, which is also known as MOVPE [Metal-Organic Vapor Phase Epitaxy]."

Tansu’s works represent the first realization of MOCVD-grown high-performance 1300-nm dilute-nitride lasers under continuous-wave (CW) operations rather than pulsed conditions, and with a better performance than that achieved with molecular beam epitaxy. (A German research group previously demonstrated that type of high-performance laser with molecular beam epitaxy.) CW is a virtual prerequisite for lasers to be used in real-world applications; pulsed conditions are typically used in the early stages of experimentation.

The lasers in Tansu’s system emit from a 6-nm-thick quantum well that is grown on a dilute-nitride semiconductor nanostructure layer using a strained-compensated technique.

Tansu earned his bachelor’s and Ph.D. degrees in 1998 and 2003, respectively, from the University of Wisconsin-Madison, where he also won the 2003 Harold A. Peterson Best Research Paper Award.


Kurt Pfitzer | Lehigh University
Further information:
http://www3.lehigh.edu/engineering/news/tansuvaluesforinfraredrange.asp

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>