Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD physicists see solar electrons, auroras associated with recent geomagnetic storms

11.12.2003


Using an orbiting camera designed to block the light from the sun and stars, an international team of solar physicists has been able for the first time to directly image clouds of electrons surrounding Earth that travel from the sun during periods of solar flare activity.



These electron clouds, a part of the solar atmosphere that extends millions of miles from the sun, cause geomagnetic storms that can disrupt communications satellites, expose high-flying aircraft to excess radiation and even damage ground-based power-generating facilities.

The images taken by this new camera, which will be discussed at a scientific session and news conference at the fall meeting in San Francisco of the American Geophysical Union, should allow space weather forecasters to substantially improve their predictions of geomagnetic storms.


"Until now, we didn’t have a good way to view the clouds of electrons that pass Earth from coronal mass ejections," said Bernard V. Jackson, a solar physicist at the University of California, San Diego. "We are living inside the solar atmosphere, but up until now had no way to view it, so space forecasters couldn’t be certain whether an ejection from the sun would affect the Earth one to five days later or harmlessly pass us by. Now that we can see these clouds as they travel through space outward from the sun, we can map their trajectories."

The orbiting camera, known as the Solar Mass Ejection Imager, was built by scientists and engineers at UCSD, the Air Force Research Laboratory, University of Birmingham in the United Kingdom, Boston College and Boston University. The instrument was launched in January by the Air Force and has provided the team of scientists with numerous images of coronal mass ejections, which can be seen in the images because of the faint scattering of sunlight from the clouds of electrons.

To the surprise of the scientists, the images also revealed the existence of high-altitude auroras, extending more than 500 miles above the Earth’s surface. Such auroras had previously been reported by space-shuttle astronauts, but their observations were questioned because air molecules were not thought to exist in sufficient quantity at that altitude to produce such light displays.

Bright auroras seen from the surface of our planet in the high northern and southern latitudes are caused by pulses of charged particles, mostly electrons, from the sun that overload the Earth’s lower radiation belt and are discharged into the atmosphere, colliding with air molecules in the atmosphere in shimmering displays of colorful light known as the northern (or southern) lights. Auroras typically extend from 60 miles above Earth’s surface to several hundred miles. But at 500 miles above the Earth’s surface, the density of air molecules is not enough to permit auroras-or so scientists have long believed.

"It’s a mystery," said Jackson of UCSD’s Center for Astrophysics and Space Sciences. "This is far higher than anyone had ever expected. It may be that nitrogen from the ionosphere is ejected into the higher altitudes during a coronal mass ejection."

The auroras were first noted by Andrew Buffington, another UCSD solar physicist, while combing through data taken by the Solar Mass Ejection Imager. In a series of image frames taken four seconds apart during a coronal mass ejection in late May, Buffington detected a bright source of light, 100 times brighter than the scattering of sunlight from the electrons. Similar sequences were seen during subsequent mass ejections by Buffington and Boston College scientists Don Mizuno and Dave Webb.

"We’ve observed high-altitude auroras during all of the coronal mass ejection events that engulfed Earth since the instrument became operational," says Jackson. "In fact, the last big event in late October had a lot of auroras associated with it. But we still don’t understand the process that is causing them."

He said researchers at the Air Force Research Laboratory are presently studying the data to come up with some possible explanations. The project was financed by the U.S. Air Force, National Aeronautics and Space Administration, National Science Foundation and the University of Birmingham.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu/

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>