Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet-formation model indicates Earthlike planets might be common

11.12.2003


Astrobiologists disagree about whether advanced life is common or rare in our universe. But new research suggests that one thing is pretty certain – if an Earthlike world with significant water is needed for advanced life to evolve, there could be many candidates.



In 44 computer simulations of planet formation near a sun, astronomers found that each simulation produced one to four Earthlike planets, including 11 so-called "habitable" planets about the same distance from their stars as Earth is from our sun.

"Our simulations show a tremendous variety of planets. You can have planets that are half the size of Earth and are very dry, like Mars, or you can have planets like Earth, or you can have planets three times bigger than Earth, with perhaps 10 times more water," said Sean Raymond, a University of Washington doctoral student in astronomy.


Raymond is the lead author of a paper detailing the simulation results that has been accepted for publication in Icarus, the journal of the American Astronomical Society’s Division for Planetary Sciences. Co-authors are Thomas R. Quinn, a UW associate astronomy professor, and Jonathan Lunine, a professor of planetary science and physics at the University of Arizona.

The simulations show that the amount of water on terrestrial, or Earthlike, planets could be greatly influenced by outer gas giant planets like Jupiter.

"The more eccentric giant planet orbits result in drier terrestrial planets," Raymond said. "Conversely, more circular giant planet orbits mean wetter terrestrial planets."

In the case of our solar system, Jupiter’s orbit is slightly elliptical, which could explain why Earth is 80 percent covered by oceans rather than being bone dry or completely covered in water miles deep.

The findings are significant because of the discovery in recent years of a large number of giant planets such as Jupiter and Saturn orbiting other suns. The presence, and orbits, of those planets can be inferred from their gravitational interaction with their parent stars and their affect on light from those stars as seen from Earth.

It currently is impossible to detect Earthlike planets around other stars. However, if results from the models are correct, there could be planets such as ours around a number of other suns relatively close to our solar system. A significant number of those planets are likely to be in the "habitable zone," the distance from a star at which the planet’s temperature will maintain liquid water on the surface. Liquid water is thought to be a requirement for life, so planets in a star’s habitable zone are ideal candidates for life. It is unclear, however, whether those planets could harbor more than simple microbial life.

The researchers note that their models represent the extremes of what is possible in forming Earthlike planets rather than what is typical of planets observed in our galaxy. For now, they said, it is unclear which approach is more realistic.

Their goal is to understand what a system’s terrestrial planets will look like if the characteristics of a system’s giant planets are known, Raymond said.

Quinn noted that all of the giant planets detected so far have orbits that carry them very close to their parent stars, so their orbits are completed in a relatively short time and it is easier to observe them. The giant planets observed close to their parent stars likely formed farther away and then, because of gravitational forces, migrated closer.

But Quinn expects that giant planets will begin to be discovered farther away from their suns as astronomers have more time to watch and are able to observe gravitational effects during their longer orbits. He doubts such planets will be found before they have completed whatever migration they make toward their suns, because their orbits would be too irregular to observe with any confidence.

"These simulations occur after their migration is over, after the orbits of the gas giants have stabilized," he said.


The research is supported by the National Aeronautics and Space Administration’s Astrobiology Institute, its Planetary Atmospheres program, and Intel Corp.

For more information, contact Raymond at raymond@astro.washington.edu or 206-543-9039; Quinn at trq@astro.washington.edu or 206-685-9009; or Lunine at jlunine@lpl.arizona.edu,520-621-2789.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>