Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet-formation model indicates Earthlike planets might be common

11.12.2003


Astrobiologists disagree about whether advanced life is common or rare in our universe. But new research suggests that one thing is pretty certain – if an Earthlike world with significant water is needed for advanced life to evolve, there could be many candidates.



In 44 computer simulations of planet formation near a sun, astronomers found that each simulation produced one to four Earthlike planets, including 11 so-called "habitable" planets about the same distance from their stars as Earth is from our sun.

"Our simulations show a tremendous variety of planets. You can have planets that are half the size of Earth and are very dry, like Mars, or you can have planets like Earth, or you can have planets three times bigger than Earth, with perhaps 10 times more water," said Sean Raymond, a University of Washington doctoral student in astronomy.


Raymond is the lead author of a paper detailing the simulation results that has been accepted for publication in Icarus, the journal of the American Astronomical Society’s Division for Planetary Sciences. Co-authors are Thomas R. Quinn, a UW associate astronomy professor, and Jonathan Lunine, a professor of planetary science and physics at the University of Arizona.

The simulations show that the amount of water on terrestrial, or Earthlike, planets could be greatly influenced by outer gas giant planets like Jupiter.

"The more eccentric giant planet orbits result in drier terrestrial planets," Raymond said. "Conversely, more circular giant planet orbits mean wetter terrestrial planets."

In the case of our solar system, Jupiter’s orbit is slightly elliptical, which could explain why Earth is 80 percent covered by oceans rather than being bone dry or completely covered in water miles deep.

The findings are significant because of the discovery in recent years of a large number of giant planets such as Jupiter and Saturn orbiting other suns. The presence, and orbits, of those planets can be inferred from their gravitational interaction with their parent stars and their affect on light from those stars as seen from Earth.

It currently is impossible to detect Earthlike planets around other stars. However, if results from the models are correct, there could be planets such as ours around a number of other suns relatively close to our solar system. A significant number of those planets are likely to be in the "habitable zone," the distance from a star at which the planet’s temperature will maintain liquid water on the surface. Liquid water is thought to be a requirement for life, so planets in a star’s habitable zone are ideal candidates for life. It is unclear, however, whether those planets could harbor more than simple microbial life.

The researchers note that their models represent the extremes of what is possible in forming Earthlike planets rather than what is typical of planets observed in our galaxy. For now, they said, it is unclear which approach is more realistic.

Their goal is to understand what a system’s terrestrial planets will look like if the characteristics of a system’s giant planets are known, Raymond said.

Quinn noted that all of the giant planets detected so far have orbits that carry them very close to their parent stars, so their orbits are completed in a relatively short time and it is easier to observe them. The giant planets observed close to their parent stars likely formed farther away and then, because of gravitational forces, migrated closer.

But Quinn expects that giant planets will begin to be discovered farther away from their suns as astronomers have more time to watch and are able to observe gravitational effects during their longer orbits. He doubts such planets will be found before they have completed whatever migration they make toward their suns, because their orbits would be too irregular to observe with any confidence.

"These simulations occur after their migration is over, after the orbits of the gas giants have stabilized," he said.


The research is supported by the National Aeronautics and Space Administration’s Astrobiology Institute, its Planetary Atmospheres program, and Intel Corp.

For more information, contact Raymond at raymond@astro.washington.edu or 206-543-9039; Quinn at trq@astro.washington.edu or 206-685-9009; or Lunine at jlunine@lpl.arizona.edu,520-621-2789.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>