Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling of material may extend ring lifetimes

08.12.2003


Although rings around planets like Jupiter, Saturn, Uranus and Neptune are relatively short-lived, new evidence implies that the recycling of orbiting debris can lengthen the lifetime of such rings, according to University of Colorado researchers.



Strong evidence now implies small moons near the giant planets like Saturn and Jupiter are essentially piles of rubble, said Larry Esposito, a professor at CU-Boulder’s Laboratory for Atmospheric and Space Physics. These re-constituted small bodies are the source of material for planetary rings.

Previous calculations by Esposito and LASP Research Associate Joshua Colwell showed the short lifetimes for such moons imply that the solar system is nearly at the end of the age of rings. "These philosophically unappealing results may not truly describe our solar system and the rings that may surround giant extra-solar planets," said Esposito. "Our new calculations of models explain how inclusion of recycling can lengthen the lifetime of rings and moons."


The observations from the Voyager and Galileo space missions showed a variety of rings surrounding each of the giant planets, including Jupiter, Saturn, Uranus and Neptune. The rings are mixed in each case with small moons.

"It is clear that the small moons not only sculpt the rings through their gravity, but are also the parents of the ring material," said Esposito. "In each ring system, destructive processes like grinding, darkening and spreading are acting so rapidly that the rings must be much younger than the planets they circle."

Numerical models by Esposito and Colwell from the 1990’s showed a "collisional cascade," where a planet’s moons are broken into smaller moons when struck by asteroids or comets. The fragments then are shattered to form the particles in new rings. The rings themselves are subsequently ground to dust, which is swept away.

But according to Colwell, "Some of the fragments that make up the rings may be re-accreted instead of being ground to dust. New evidence shows some debris has accumulated into moons or moonlets rather than disappearing through collisional erosion."

"This process has proceeded rapidly," said Esposito. "The typical ring is younger than a few hundred million years, the blink of an eye compared to the planets, which are 4.5 billion years old. The question naturally arises why rings still exist, to be photographed in such glory by visiting human spacecraft that have arrived lately on the scene," he said.

"The answer now likely seems to be cosmic recycling," said Esposito. Each time a moon is destroyed by a cosmic impact, much of the material released is captured by other nearby moons. These recycled moons are essentially collections of rubble, but by recycling material through a series of small moons, the lifetime of the ring system may be longer than we initially thought."

Esposito and former LASP Research Associate Robin Canup, now with the Southwest Research Institute’s Boulder branch, showed through computer modeling that smaller fragments can be recaptured by other moons in the system. "Without this recycling, the rings and moons are soon gone," said Esposito.

But with more recycling, the lifetime is longer, Esposito said. With most of the material recycled, as now appears to be the case in most rings, the lifetime is extended by a large factor.

"Although the individual rings and moons we now see are ephemeral, the phenomenon persists for billions of years around Saturn," said Esposito. "Previous calculations ignored the collective effects of the other moons in extending the persistence of rings by recapturing and recycling ring material."

Esposito, the principal investigator on a $12 million spectrograph on the Cassini spacecraft slated to arrive at Saturn in July 2004, will look closely at the competing processes of destruction and re-capture in Saturn’s F ring to confirm and quantify this explanation. Esposito discovered the F Ring using data from NASA’s Voyager 2 mission to the outer planets launched in 1978.


Contact: Larry Esposito, 303-492- 5990, Esposito@lasp.colorado.edu
Joshua Colwell, 303-492-6805
Jim Scott, 303-492-3114

Larry Esposito | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>