Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s radiation belts spectacular following Halloween solar storms

08.12.2003


The belt of high-energy electrons that normally cradles Earth from afar was greatly enhanced and pushed unusually close to our atmosphere during the violent solar activity that occurred in late October, University of Colorado at Boulder researchers say.



The results were obtained from observations by NASA’s Solar, Anomalous, and Magnetospheric Particle Explorer, or SAMPEX satellite, said CU-Boulder’s Laboratory for Atmospheric and Space Physics Director Daniel Baker. An investigator on SAMPEX, Baker will present results from the data and the Halloween solar storm at the fall American Geophysical Union meeting in San Francisco Dec. 8 to Dec. 12.

The radiation belts, also known as the Van Allen Belts, are named after their discoverer, James Van Allen. "The outer Van Allen Belt is often rather tame and is made up of modest intensities of energetic electrons," said Baker.


"These negatively charged elementary particles are confined like beads on a string by the magnetic field lines that emanate from Earth’s iron core and extend far out into space like the flux tubes from a giant bar magnet," he said. During the recent high-energy solar activity of late October and early November -- known by scientists as the "Halloween storm" of 2003 -- the outer Van Allen belt was pushed and prodded to a nearly unprecedented degree.

"We have been observing the Van Allen Belts for over 11 years with the SAMPEX spacecraft," said Baker. "We have never seen such a powerful enhancement and distortion of the radiation belts during the lifetime of SAMPEX. Baker noted that the center of the outer Van Allen belt is usually about 12,000 miles to 16,000 miles away from Earth’s surface, as measured above the equatorial region of the Earth.

During the Halloween storm, the Van Allen radiation was greatly increased and pushed inward toward Earth’s surface to an unusually close degree. "From Nov. 1 to Nov.10, the outer belt had its center only about 6,000 miles from Earth’s equatorial surface," he said. "This is a place where ordinarily there are almost no energetic electrons at all."

How the Earth’s radiation belts get so energized and distorted is still largely an unsolved mystery, despite the fact that Van Allen and co-workers discovered the radiation belts more than 45 years ago at the dawn of the space age, he said.

"Researchers have learned a great deal about electron acceleration in the belts in recent years," said Xinlin Li, a professor and researcher at LASP who works closely with Baker. "We are able to understand and forecast more normal changes in the radiation belts using our present theoretical knowledge, but extreme events such as the Halloween storm are very hard to predict."

Other spacecraft such as NASA’s POLAR satellite also observed the powerful radiation belt changes. Shri Kanekal, a researcher at Catholic University in Washington, D.C., who also is affiliated with LASP, has studied the POLAR measurements and compared them with the SAMPEX data. He found the POLAR data confirmed the surprising enhancement and distortion of the Van Allen Belts.

"The changing, raging character of the radiation belts is more than a scientific curiosity," said Baker. "The charged particles within the belts can have profound and deleterious effects on commercial and operational satellites in near-Earth orbit."

As reported in a recent paper submitted to the scientific journal, Eos, by Ramon Lopez of the University of Texas, J. H. Allen of the National Oceanic and Atmospheric Administration in Boulder and CU-Boulder’s Baker, many serious spacecraft failures and "operational anomalies" occurred during and following the Halloween storm. Many of the problems can be directly related to the hostile radiation environment in near-Earth space.

"We are excited to have the chance to study the most extreme events that nature can throw at us," he said. "We hope that in the future, we can predict how even a storm as powerful as the Halloween storm will affect Earth’s environment."


Contact:
Daniel Baker, 303-492-4509, baker@lasp.colorado.edu
Xinlin Li, 303-492-3514
Jim Scott, 492-3114

Daniel Baker | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>