Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s radiation belts spectacular following Halloween solar storms

08.12.2003


The belt of high-energy electrons that normally cradles Earth from afar was greatly enhanced and pushed unusually close to our atmosphere during the violent solar activity that occurred in late October, University of Colorado at Boulder researchers say.



The results were obtained from observations by NASA’s Solar, Anomalous, and Magnetospheric Particle Explorer, or SAMPEX satellite, said CU-Boulder’s Laboratory for Atmospheric and Space Physics Director Daniel Baker. An investigator on SAMPEX, Baker will present results from the data and the Halloween solar storm at the fall American Geophysical Union meeting in San Francisco Dec. 8 to Dec. 12.

The radiation belts, also known as the Van Allen Belts, are named after their discoverer, James Van Allen. "The outer Van Allen Belt is often rather tame and is made up of modest intensities of energetic electrons," said Baker.


"These negatively charged elementary particles are confined like beads on a string by the magnetic field lines that emanate from Earth’s iron core and extend far out into space like the flux tubes from a giant bar magnet," he said. During the recent high-energy solar activity of late October and early November -- known by scientists as the "Halloween storm" of 2003 -- the outer Van Allen belt was pushed and prodded to a nearly unprecedented degree.

"We have been observing the Van Allen Belts for over 11 years with the SAMPEX spacecraft," said Baker. "We have never seen such a powerful enhancement and distortion of the radiation belts during the lifetime of SAMPEX. Baker noted that the center of the outer Van Allen belt is usually about 12,000 miles to 16,000 miles away from Earth’s surface, as measured above the equatorial region of the Earth.

During the Halloween storm, the Van Allen radiation was greatly increased and pushed inward toward Earth’s surface to an unusually close degree. "From Nov. 1 to Nov.10, the outer belt had its center only about 6,000 miles from Earth’s equatorial surface," he said. "This is a place where ordinarily there are almost no energetic electrons at all."

How the Earth’s radiation belts get so energized and distorted is still largely an unsolved mystery, despite the fact that Van Allen and co-workers discovered the radiation belts more than 45 years ago at the dawn of the space age, he said.

"Researchers have learned a great deal about electron acceleration in the belts in recent years," said Xinlin Li, a professor and researcher at LASP who works closely with Baker. "We are able to understand and forecast more normal changes in the radiation belts using our present theoretical knowledge, but extreme events such as the Halloween storm are very hard to predict."

Other spacecraft such as NASA’s POLAR satellite also observed the powerful radiation belt changes. Shri Kanekal, a researcher at Catholic University in Washington, D.C., who also is affiliated with LASP, has studied the POLAR measurements and compared them with the SAMPEX data. He found the POLAR data confirmed the surprising enhancement and distortion of the Van Allen Belts.

"The changing, raging character of the radiation belts is more than a scientific curiosity," said Baker. "The charged particles within the belts can have profound and deleterious effects on commercial and operational satellites in near-Earth orbit."

As reported in a recent paper submitted to the scientific journal, Eos, by Ramon Lopez of the University of Texas, J. H. Allen of the National Oceanic and Atmospheric Administration in Boulder and CU-Boulder’s Baker, many serious spacecraft failures and "operational anomalies" occurred during and following the Halloween storm. Many of the problems can be directly related to the hostile radiation environment in near-Earth space.

"We are excited to have the chance to study the most extreme events that nature can throw at us," he said. "We hope that in the future, we can predict how even a storm as powerful as the Halloween storm will affect Earth’s environment."


Contact:
Daniel Baker, 303-492-4509, baker@lasp.colorado.edu
Xinlin Li, 303-492-3514
Jim Scott, 492-3114

Daniel Baker | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>