Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s radiation belts spectacular following Halloween solar storms

08.12.2003


The belt of high-energy electrons that normally cradles Earth from afar was greatly enhanced and pushed unusually close to our atmosphere during the violent solar activity that occurred in late October, University of Colorado at Boulder researchers say.



The results were obtained from observations by NASA’s Solar, Anomalous, and Magnetospheric Particle Explorer, or SAMPEX satellite, said CU-Boulder’s Laboratory for Atmospheric and Space Physics Director Daniel Baker. An investigator on SAMPEX, Baker will present results from the data and the Halloween solar storm at the fall American Geophysical Union meeting in San Francisco Dec. 8 to Dec. 12.

The radiation belts, also known as the Van Allen Belts, are named after their discoverer, James Van Allen. "The outer Van Allen Belt is often rather tame and is made up of modest intensities of energetic electrons," said Baker.


"These negatively charged elementary particles are confined like beads on a string by the magnetic field lines that emanate from Earth’s iron core and extend far out into space like the flux tubes from a giant bar magnet," he said. During the recent high-energy solar activity of late October and early November -- known by scientists as the "Halloween storm" of 2003 -- the outer Van Allen belt was pushed and prodded to a nearly unprecedented degree.

"We have been observing the Van Allen Belts for over 11 years with the SAMPEX spacecraft," said Baker. "We have never seen such a powerful enhancement and distortion of the radiation belts during the lifetime of SAMPEX. Baker noted that the center of the outer Van Allen belt is usually about 12,000 miles to 16,000 miles away from Earth’s surface, as measured above the equatorial region of the Earth.

During the Halloween storm, the Van Allen radiation was greatly increased and pushed inward toward Earth’s surface to an unusually close degree. "From Nov. 1 to Nov.10, the outer belt had its center only about 6,000 miles from Earth’s equatorial surface," he said. "This is a place where ordinarily there are almost no energetic electrons at all."

How the Earth’s radiation belts get so energized and distorted is still largely an unsolved mystery, despite the fact that Van Allen and co-workers discovered the radiation belts more than 45 years ago at the dawn of the space age, he said.

"Researchers have learned a great deal about electron acceleration in the belts in recent years," said Xinlin Li, a professor and researcher at LASP who works closely with Baker. "We are able to understand and forecast more normal changes in the radiation belts using our present theoretical knowledge, but extreme events such as the Halloween storm are very hard to predict."

Other spacecraft such as NASA’s POLAR satellite also observed the powerful radiation belt changes. Shri Kanekal, a researcher at Catholic University in Washington, D.C., who also is affiliated with LASP, has studied the POLAR measurements and compared them with the SAMPEX data. He found the POLAR data confirmed the surprising enhancement and distortion of the Van Allen Belts.

"The changing, raging character of the radiation belts is more than a scientific curiosity," said Baker. "The charged particles within the belts can have profound and deleterious effects on commercial and operational satellites in near-Earth orbit."

As reported in a recent paper submitted to the scientific journal, Eos, by Ramon Lopez of the University of Texas, J. H. Allen of the National Oceanic and Atmospheric Administration in Boulder and CU-Boulder’s Baker, many serious spacecraft failures and "operational anomalies" occurred during and following the Halloween storm. Many of the problems can be directly related to the hostile radiation environment in near-Earth space.

"We are excited to have the chance to study the most extreme events that nature can throw at us," he said. "We hope that in the future, we can predict how even a storm as powerful as the Halloween storm will affect Earth’s environment."


Contact:
Daniel Baker, 303-492-4509, baker@lasp.colorado.edu
Xinlin Li, 303-492-3514
Jim Scott, 492-3114

Daniel Baker | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>