Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in on a proton packed with surprises

05.12.2003


The structure of the proton is under the microscope at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, where a series of experiments continues to produce unexpected results.


The shape of the proton can differ, depending on the angular momentum of quarks.
(Gerald A. Miller/University of Washington)



Simple theories of proton structure say that the way electric charge is distributed in the proton is the same as the magnetization distribution. But Jefferson Lab results indicate these distributions are definitely different.

A fundamental goal of nuclear physics is to understand the structure and behavior of strongly interacting matter in terms of its building blocks, quarks and gluons. An important step toward this goal is a description of the internal structure for the proton and neutron, collectively known as nucleons. Jefferson Lab was built, in part, to study the physics of quarks and gluons and their connection to larger composite objects like protons.


The proton is the positively charged core of the hydrogen atom, the most abundant element in the universe. It is made up of three charged quarks and the gluons that bind them together. The quarks move around, so the proton has a charge distributed over its size. This leads to the generation of an electric current, which in turn induces a magnetic field. In addition, quarks and gluons both have spin, leading to a magnetic moment. The combination of the total magnetic field and the magnetic moment is a quantity called magnetization.

Jefferson Lab is uniquely positioned to measure the proton’s electric charge and magnetization distributions, the so-called electromagnetic form factors that describe its internal structure.

In two recent Jefferson Lab experiments, researchers directed the accelerator’s polarized electron beam toward liquid hydrogen cooled to 17 Kelvin (–429°F). Each electron in the beam has an intrinsic angular momentum, or spin. The beam of electrons is said to be "polarized" if their spins point — on average — in a specific direction. As an electron collided with a proton in the hydrogen target, the proton recoiled, becoming polarized during the interaction. The scattered electron and recoiling proton were then detected in two high-resolution spectrometers (HRS), and the proton polarization was measured by a specially developed detector called a proton polarimeter.

From these measurements, the researchers could obtain a ratio of electric charge distribution to magnetization distribution — the electric and magnetic form factors — at various depths inside the proton. Their experiments revealed unexpected and significantly different energy-dependence for the form factors. The data showed that the proton’s charge distribution is not the same as its magnetization distribution; the charge distribution is more spread out than the magnetization.

These results are very interesting to both experimental and theoretical physicists. The Jefferson Lab data has already had an impact on theoretical models, helping rule out some models, directing others toward a better description of internal proton structure.

One such model was developed in 1996 by physicists Gerald A. Miller and Michael R. Frank, both from the University of Washington in Seattle, and Byron K. Jennings from TRIUMF in Vancouver. The researchers predicted a fall-off in the ratio of the electromagnetic form factors but, at the time, they didn’t realize that experimental confirmation was possible. When the results of the first Jefferson Lab experiments probing proton structure were announced in 2000, the prediction was confirmed.

An interesting by-product of Miller’s theory is that the proton is not necessarily spherical in shape. Depending on the angular momentum of the quarks, the proton could be spherical in shape or more like a doughnut, a pretzel or a peanut. Miller says the variety of shapes is nearly limitless, and depends on the momentum of the quarks and the angle between the spin of the quark and the spin of the proton.

Media contact: Linda Ware, Jefferson Lab Public Affairs Manager, 757-268-7689, ware@jlab.org
Technical contacts: Vina Punjabi (punjabi@jlab.org); Charles Perdrisat (perdrisa@jlab.org)

Linda Ware | Jefferson Lab
Further information:
http://www.jlab.org/div_dept/dir_off/public_affairs/news_releases/2003/03protonshape.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>