Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new Cornell ’nanoguitar,’ played by a laser, offers promise of applications in electronics and sensing

19.11.2003


Six years ago Cornell University researchers built the world’s smallest guitar -- about the size of a red blood cell -- to demonstrate the possibility of manufacturing tiny mechanical devices using techniques originally designed for building microelectronic circuits.


The original nanoguitar (top) was made to resemble a Fender Stratocaster. The new, "playable" version is modeled on the Gibson Flying V. Both were made by electron beam lithography, which can create far smaller shapes than earlier methods, at the Cornell Nanoscale Facility. Craigfhead GroupCopyright © Cornell University



Now, by "playing" a new, streamlined nanoguitar, Cornell physicists are demonstrating how such devices could substitute for electronic circuit components to make circuits smaller, cheaper and more energy-efficient.

Lidija Sekaric, who built the new, playable nanoguitar while an Applied Physics graduate student at Cornell, described the project, along with other materials and device research in nanoelectromechanical systems (NEMS), at the 50th International Symposium and Exhibition of the American Vacuum Society, Nov. 2 to 7 in Baltimore,. At the same meeting Harold Craighead, professor of applied and engineering physics at Cornell, presented a plenary talk reviewing the uses of NEMS in biology. Sekaric worked in the Craighead Research Group at Cornell, part of the Cornell Center for Materials Research study of NEMS systems.


NEMS usually refers to devices about two orders of magnitude smaller than MEMS (microelectromechanical systems). Craighead prefers to define NEMS as devices in which the small size is essential for the job, such as those that respond to very small forces or biosensors so small that they can measure the mass of a single bacterium.

Sekaric, now a researcher at IBM’s Watson Research Center in Yorktown Heights, N.Y., worked with Cornell graduate student Keith Aubin and undergraduate researcher Jingqing Huang on the new nanoguitar, which is about five times larger than the original, but still so small that its shape can only be seen in a microscope. Its strings are really silicon bars, 150 by 200 nanometers in cross-section and ranging from 6 to 12 micrometers in length (a micrometer is one-millionth of a meter; a nanometer is a billionth of a meter, the length of three silicon atoms in a row). The strings vibrate at frequencies 17 octaves higher than those of a real guitar, or about 130,000 times higher.

The researchers recently observed that light from a laser could cause properly designed small devices to oscillate, and this effect underlies the nanoguitar design. The nanoguitar is played by hitting the strings with a focused laser beam. When the strings vibrate they create interference patterns in the light reflected back, which can be detected and electronically converted down to audible notes. The device can play only simple tones, although chords can be played by activating more than one string at a time. The pitches of the strings are determined by their length, not by their tension as in a normal guitar, but the group has "tuned" the resonances in similar devices by applying a DC voltage.

"The generations of researchers to come can aim to play more complex pieces," says Sekaric. "This goal would indeed improve the science and technology of NEMS by aiming for integrated driving and detection schemes as well as a wide range of frequencies produced from a small set of vibrating elements."

Most of the devices the group studies don’t resemble guitars, but the study of resonances often leads to musical analogies, and the natural designs of the small resonant systems often leads to shapes that look like harps, xylophones or drums. The guitar shape was, Craighead says, "an artistic expression by the engineering students." Sekaric notes that "a nanoguitar, as something close to almost everybody’s understanding and experience, can also be used as a good educational tool about the field of nanotechnology, which indeed needs much public education and outreach."

The ability to make tiny things vibrate at very high frequencies offers many potential applications in electronics. From guitar strings on down, the frequency at which an object vibrates depends on its mass and dimensions. Nanoscale objects can be made to vibrate at radio frequencies (up to hundreds of megaHertz) and so can substitute for other components in electronic circuits. Cell phones and other wireless devices, for example, usually use the oscillations of a quartz crystal to generate the carrier wave on which they transmit or to tune in an incoming signal. A tiny vibrating nanorod might do the same job in vastly less space, while drawing only milliwatts of power.

Research by the Cornell NEMS group has shown that these oscillations can be tuned to a very narrow range of frequencies -- a property referred to in electronics as "high Q" -- which makes them useful as filters to separate signals of different frequencies. They also may be used to detect vibrations to help locate objects or detect faint sounds that could predict the failure of machinery or structures.

As the nanoguitar shows, NEMS can be used to modulate light, meaning they might be used in fiber-optic communications systems. Such systems currently require a laser at each end for two-way communication. Instead, Craighead suggests that a powerful laser at one end could send a beam that would be modulated and reflected back by a far less expensive NEMS device. This could make it more economical to run fiber-optic connections to private homes or to desktop computers in an office.

Current research at Cornell, Craighead says, still focuses on understanding what materials work best for making NEMS, how such small devices work and what they can do, gathering understanding that can be used in building future applications. .

The Craighead Group NEMS research also includes graduate students Rob Reichenbach and Scott Verberage, research associate Maxim Zalalutdinov and Physics Professror Jeevak Parpia. Aubin, Reichenbach and Zalalutdinov recently received the 2003 Collegiate Inventors Prize for an ultra-small oscillator.

Bill Steele | Cornell University
Further information:
http://www.news.cornell.edu/releases/Nov03/NEMSguitar.ws.html
http://www.news.cornell.edu/releases/July97/guitar.ltb.html
http://www.hgc.cornell.edu/index.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>