Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new Cornell ’nanoguitar,’ played by a laser, offers promise of applications in electronics and sensing

19.11.2003


Six years ago Cornell University researchers built the world’s smallest guitar -- about the size of a red blood cell -- to demonstrate the possibility of manufacturing tiny mechanical devices using techniques originally designed for building microelectronic circuits.


The original nanoguitar (top) was made to resemble a Fender Stratocaster. The new, "playable" version is modeled on the Gibson Flying V. Both were made by electron beam lithography, which can create far smaller shapes than earlier methods, at the Cornell Nanoscale Facility. Craigfhead GroupCopyright © Cornell University



Now, by "playing" a new, streamlined nanoguitar, Cornell physicists are demonstrating how such devices could substitute for electronic circuit components to make circuits smaller, cheaper and more energy-efficient.

Lidija Sekaric, who built the new, playable nanoguitar while an Applied Physics graduate student at Cornell, described the project, along with other materials and device research in nanoelectromechanical systems (NEMS), at the 50th International Symposium and Exhibition of the American Vacuum Society, Nov. 2 to 7 in Baltimore,. At the same meeting Harold Craighead, professor of applied and engineering physics at Cornell, presented a plenary talk reviewing the uses of NEMS in biology. Sekaric worked in the Craighead Research Group at Cornell, part of the Cornell Center for Materials Research study of NEMS systems.


NEMS usually refers to devices about two orders of magnitude smaller than MEMS (microelectromechanical systems). Craighead prefers to define NEMS as devices in which the small size is essential for the job, such as those that respond to very small forces or biosensors so small that they can measure the mass of a single bacterium.

Sekaric, now a researcher at IBM’s Watson Research Center in Yorktown Heights, N.Y., worked with Cornell graduate student Keith Aubin and undergraduate researcher Jingqing Huang on the new nanoguitar, which is about five times larger than the original, but still so small that its shape can only be seen in a microscope. Its strings are really silicon bars, 150 by 200 nanometers in cross-section and ranging from 6 to 12 micrometers in length (a micrometer is one-millionth of a meter; a nanometer is a billionth of a meter, the length of three silicon atoms in a row). The strings vibrate at frequencies 17 octaves higher than those of a real guitar, or about 130,000 times higher.

The researchers recently observed that light from a laser could cause properly designed small devices to oscillate, and this effect underlies the nanoguitar design. The nanoguitar is played by hitting the strings with a focused laser beam. When the strings vibrate they create interference patterns in the light reflected back, which can be detected and electronically converted down to audible notes. The device can play only simple tones, although chords can be played by activating more than one string at a time. The pitches of the strings are determined by their length, not by their tension as in a normal guitar, but the group has "tuned" the resonances in similar devices by applying a DC voltage.

"The generations of researchers to come can aim to play more complex pieces," says Sekaric. "This goal would indeed improve the science and technology of NEMS by aiming for integrated driving and detection schemes as well as a wide range of frequencies produced from a small set of vibrating elements."

Most of the devices the group studies don’t resemble guitars, but the study of resonances often leads to musical analogies, and the natural designs of the small resonant systems often leads to shapes that look like harps, xylophones or drums. The guitar shape was, Craighead says, "an artistic expression by the engineering students." Sekaric notes that "a nanoguitar, as something close to almost everybody’s understanding and experience, can also be used as a good educational tool about the field of nanotechnology, which indeed needs much public education and outreach."

The ability to make tiny things vibrate at very high frequencies offers many potential applications in electronics. From guitar strings on down, the frequency at which an object vibrates depends on its mass and dimensions. Nanoscale objects can be made to vibrate at radio frequencies (up to hundreds of megaHertz) and so can substitute for other components in electronic circuits. Cell phones and other wireless devices, for example, usually use the oscillations of a quartz crystal to generate the carrier wave on which they transmit or to tune in an incoming signal. A tiny vibrating nanorod might do the same job in vastly less space, while drawing only milliwatts of power.

Research by the Cornell NEMS group has shown that these oscillations can be tuned to a very narrow range of frequencies -- a property referred to in electronics as "high Q" -- which makes them useful as filters to separate signals of different frequencies. They also may be used to detect vibrations to help locate objects or detect faint sounds that could predict the failure of machinery or structures.

As the nanoguitar shows, NEMS can be used to modulate light, meaning they might be used in fiber-optic communications systems. Such systems currently require a laser at each end for two-way communication. Instead, Craighead suggests that a powerful laser at one end could send a beam that would be modulated and reflected back by a far less expensive NEMS device. This could make it more economical to run fiber-optic connections to private homes or to desktop computers in an office.

Current research at Cornell, Craighead says, still focuses on understanding what materials work best for making NEMS, how such small devices work and what they can do, gathering understanding that can be used in building future applications. .

The Craighead Group NEMS research also includes graduate students Rob Reichenbach and Scott Verberage, research associate Maxim Zalalutdinov and Physics Professror Jeevak Parpia. Aubin, Reichenbach and Zalalutdinov recently received the 2003 Collegiate Inventors Prize for an ultra-small oscillator.

Bill Steele | Cornell University
Further information:
http://www.news.cornell.edu/releases/Nov03/NEMSguitar.ws.html
http://www.news.cornell.edu/releases/July97/guitar.ltb.html
http://www.hgc.cornell.edu/index.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>