Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing a Burst with Sunglasses

13.11.2003


Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow



"Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960’s by military satellites, last from less than one second to several minutes.

GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00.


During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO’s Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion.

Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA’s High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date.

A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the polarisation properties of the afterglow of GRB 030329 as it developed after the explosion.

Hypernovae, the source of GRBs, are indeed so far away that they can only be seen as unresolved points of light. To probe their spatial structure, astronomers have thus to rely on a trick: polarimetry (see ESO PR 23/03).

Polarimetry works as follows: light is composed of electromagnetic waves which oscillate in certain directions (planes). Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflecting off a pond.

The radiation in a gamma-ray burst is generated in an ordered magnetic field, as so-called synchrotron radiation [3]. If the hypernova is spherically symmetric, all orientations of the electromagnetic waves will be present equally and will average out, so there will be no net polarisation. If, however, the gas is not ejected symmetrically, but into a jet, a slight net polarisation will be imprinted on the light. This net polarisation will change with time since the opening angle of the jet widens with time, and we see a different fraction of the emission cone.

Studying the polarisation properties of the afterglow of a gamma-ray burst thus allows to gain knowledge about the underlying spatial structures and the strength and orientation of the magnetic field in the region where the radiation is generated. "And doing this over a long period of time, as the afterglow fades and evolves, provides us with a unique diagnostic tool for gamma-ray burst studies", says Jochen Greiner.

Although previous single measurements of the polarisation of GRB’s optical afterglow exist, no detailed study has ever been done of the evolution of polarisation with time. This is indeed a very demanding task, only possible with an extremely stable instrument on the largest telescope... and a sufficient bright optical afterglow.

As soon as GRB 030329 was detected, the team of astronomers therefore turned to the powerful multi-mode FORS1 instrument on the VLT ANTU telescope. They obtained 31 polarimetric observations over a period of 38 days, enabling them to measure, for the first time, the changes of the polarisation of an optical gamma-ray burst afterglow with time. This unique set of observational data documents the physical changes in the remote object in unsurpassed detail.

Their data show the presence of polarisation at the level of 0.3 to 2.5 % throughout the 38-day period with significant variability in strength and orientation on timescales down to hours. This particular behaviour has not been predicted by any of the major theories.

Unfortunately, the very complex light curve of this GRB afterglow, in itself not understood, prevents a straightforward application of existing polarisation models. "It turns out that deriving the direction of the jet and the magnetic field structure is not as simple as we thought originally", notes Olaf Reimer, another member of the team. "But the rapid changes of the polarisation properties, even during smooth phases of the afterglow light curve, provide a challenge to afterglow theory".

"Possibly", adds Jochen Greiner, "the overall low level of polarisation indicates that the strength of the magnetic field in the parallel and perpendicular directions do not differ by more than 10%, thus suggesting a field strongly coupled with the moving material. This is different from the large-scale field which is left-over from the exploding star and which is thought to produce the high-level of polarisation in the gamma-rays."

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2003/pr-30-03.html

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>