Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The affordable Cosmic Vision

07.11.2003


Yesterday, at its 105th meeting, ESA’s Science Programme Committee (SPC) has made important decisions concerning the Cosmic Vision programme. Due to the current financial exigencies and an outlook with no budget increase or other relief, the SPC was forced to cancel the Eddington mission and rescope the BepiColombo mission.



Eddington had two aims, both remarkable and very pertinent to front-line astronomical interests. The first aim was to look for Earth-like planets outside our solar system - one of the key goals in the search to understand how life came to be, how we came to live where we do in the universe and whether there are other potential life supporting environments ’out there’. At the same time it was going to follow on the path blazed by the ESA-NASA mission SOHO had taken with the Sun of using astroseismology to look ’inside’ stars. In the longer term, the loss of this one mission will not stop us pursuing the grand quests for which it is a step.

The loss of the BepiColombo lander is also scientifically hard to take. ESA, in conjunction with the Japanese space agency, JAXA, will still put two orbiters around Mercury but the ‘ground truth’ provided by the lander is a big loss. However, to land on a planet so near the Sun is no small matter and was a bridge too far in present circumstances, and this chance for Europe to be first has probably been lost.
The origins of the problems were recognized at the ESA Council, held in June 2003. Several sudden demands on finance occurred in the spring, the most obvious and public being the unforeseen Ariane 5 grounding in January. A loan of 100 million Euro was temporarily granted, that must be paid back out of present resources by the end of 2006.



ESA’s SPC were therefore caught in a vice. Immediate mission starts had to be severely limited and the overall envelope of the programme kept down.

By making today’s decision, the SPC has brought down the scope of the Cosmic Vision programme to a level that necessarily reflects the financial conditions rather than the ambitions of the scientific community.

A long and painful discussion during the SPC meeting resulted in the conclusion that only one new mission can be started at this time, namely LISA Pathfinder. The mission is the technical precursor to the world’s first gravitational wave astronomical observatory, LISA. The LISA mission itself (to be made in cooperation with the United States) is scheduled for launch in 2012.

ESA’s Cosmic Vision, set to last until 2012, is a living programme. It has to be able to constantly adapt to to the available funding as well as respond to the expectations of the scientific community, to technological developments. Within these boundaries, the decisions made by the SPC try to maximize the outcome of Cosmic Vision across disciplines, keeping it at the same time challenging and affordable. Nonetheless, there are many European scientists with ambitions that exceed the programme’s ability to respond.

ESA Media Relations | European Space Agency
Further information:
http://www.esa.int/export/esaCP/SEMDVTWLDMD_index_0.html

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>