Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting Einstein to the test in a small glass tube

05.11.2003


The most accurate test to date of Einstein’s theory of special relativity is taking place at the University of Sussex. The investigation of Einstein’s 1905 theory could change the face of modern physics. It will examine quantum gravity, a theory which introduces very small modifications into the accepted 1905 theory.

Examination of Einstein’s theory is usually a costly and time-consuming exercise. Existing experiments involve multi-million dollar space projects. Physicist Dr Ben Varcoe has devised a way of bringing the science down to earth.

Dr Varcoe said: “I have created a new means of looking at the problem without the hassle and cost of sending large spacecrafts away from the planet. We shall gain better results here at Sussex by shining lasers through a small glass tube and measuring the effects.”



The experiment looks at quantum gravity, a theory which introduces very small modifications to the Einstein’s theory. The experiment is designed to accurately measure any changes to the speed of light during testing. The aim is to find out whether light really is “c”, a constant, in the famous equation E=mc2. Einstein decreed the speed of light must be a the same regardless of how fast the observers of the experiment are moving. New physics disciplines, such as quantum gravity and string theory, often introduce small changes to Einstein’s theory.

Light has two properties, the time it takes to go between two points and the distance between its waves. Quantum physics makes it possible to alter the time it takes for the light to travel between two points whilst leaving the speed of the waves the same. Dr Varcoe’s experiment involves slowing down the speed of a flash of light so it takes a very long time to travel through the experiment in a laboratory at the University campus. By slowing the speed of the light flash to a manageable level it is possible to examine the associated light waves and test Einstein’s theory to a higher precision than ever before.

Dr Varcoe said: “No one in the UK has ever tried slowing down light for this purpose. The speed of light is incredibly fast at about 30 million metres a second which is why great distances in space are used for testing. We will be able to use a 5 cm glass tube with gas inside to slow the light from three lasers down to 10 metres a second. It is a simple practical method for tackling a major intellectual challenge.”

The tests will be carried out by Dr Varcoe assisted by two undergraduate students. Initial findings are expected within six months with full results by late 2005. The project has been funded by a grant from the Particle Physics and Astronomy Research Council.

Alix Macfarlane | alfa
Further information:
http://www.sussex.ac.uk

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>