Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers find nearest galaxy to Milky Way


An international team of astronomers from France, Italy, the UK and Australia has found a previously unknown galaxy colliding with our own Milky Way. This newly-discovered galaxy takes the record for the nearest galaxy to the centre of the Milky Way.

The tidal forces of the Milky Way slowly pull apart the Canis Major dwarf galaxy (shown here in red). The stars ripped off in this fashion, surround the galaxy in a vast ring.

Called the Canis Major dwarf galaxy after the constellation in which it lies, it is about 25000 light years away from the solar system and 42000 light years from the centre of the Milky Way. This is closer than the Sagittarius dwarf galaxy, discovered in 1994, which is also colliding with the Milky Way. The discovery shows that the Milky Way is building up its own disk by absorbing small satellite galaxies. The research is to be published in the Monthly Notices of the Royal Astronomical Society within the next few weeks.

The discovery of the Canis Major dwarf was made possible by a recent survey of the sky in infrared light (the Two-Micron All Sky Survey or "2MASS"), which has allowed astronomers to look beyond the clouds of dust in the disk of the Milky Way. Until now, the dwarf galaxy lay undetected behind the dense disk. "It’s like putting on infrared night-vision goggles," says team-member Dr Rodrigo Ibata of Strasbourg Observatory. "We are now able to study a part of the Milky Way that has been previously out of sight".

The new dwarf galaxy was detected by its M-giant stars – cool, red stars that shine especially brightly in infrared light. "We have used these rare M-giant stars as beacons to trace out the shape and location of the new galaxy because its numerous other stars are too faint for us to see," explains Nicolas Martin, also of Strasbourg Observatory. "They are particularly useful stars as we can measure their distances, and so map out the three-dimensional structure of distant regions of the Milky Way disk." In this way, the astronomers found the main dismembered corpse of the dwarf galaxy in Canis Major and long trails of stars leading back to it. It seems that streams of stars pulled out of the cannibalised Canis Major galaxy not only contribute to the outer reaches of the Milky Way’s disk, but may also pass close to the Sun.

Astronomers currently believe that large galaxies like the Milky Way grew to their present majestic proportions by consuming their smaller galactic neighbours. They have found that cannibalised galaxies add stars to the vast haloes around large galaxies. However, until now, they did not appreciate that even the disks of galaxies can grow in this fashion. Computer simulations show that the Milky Way has been taking stars from the Canis Major dwarf and adding them to its own disk - and will continue to do so.

"On galactic scales, the Canis Major dwarf galaxy is a lightweight of about only one billion Suns," said Dr. Michele Bellazzini of Bologna Observatory. "This small galaxy is unlikely to hold together much longer. It is being pushed and pulled by the colossal gravity of our Milky Way, which has been progressively stealing its stars and pulling it apart." Some remnants of the Canis Major dwarf form a ring around the disk of the Milky Way.

"The Canis Major dwarf galaxy may have added up to 1% more mass to our Galaxy," said Dr Geraint Lewis of the University of Sydney. "This is also an important discovery because it highlights that the Milky Way is not in its middle age - it is still forming." "Past interactions of the sort we are seeing here could be responsible for some of the exquisite detail we see today in the structure of the Galaxy," says Dr Michael Irwin of the University of Cambridge.

Dr Rodrigo Ibata | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>