Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flares near edge of our galaxy’s central black hole indicate rapid spin

31.10.2003


Razor-sharp optics on ground-based telescopes now allows astronomers to peer at events occurring near the very edge of our galaxy’s central black hole, providing new clues about the massive but invisible object at the core of the Milky Way.


The whirling accretion disk surrounding the supermassive black hole (center) at the core of the Milky Way Galaxy. As hot gas falls into the black hole, the energy is converted into radiation which is emitted in sudden bursts. The infrared emissions detected recently may accompany blobs of gas ejected from the disk (purple) or come from sparks that occur randomly in the accreting gas (yellow). (Courtesy of Nature, based on image created by Michael P. Owen)



In a paper in this week’s issue of Nature, a team led by University of California, Berkeley, physicist Reinhard Genzel, who also directs the Max-Planck Institute for Extraterrestrial Physics (MPE) in Garching, Germany, reports the detection of powerful infrared flares from a region just outside the supermassive black hole.

If the black hole, which has a mass about 3.6 million times that of the sun, were at the center of our solar system, the flares would have come from somewhere within the orbit of Earth.


The observed signals, rapidly flickering on a scale of minutes, probably came from hot gas falling into the black hole, just before the gas disappeared below the "event horizon" - the point of no return for a black hole from which even light cannot escape.

The new observations strongly suggest that the black hole at the galaxy’s core rotates rapidly, the team concluded.

"This is a major breakthrough," Genzel said. "We know from theory that a black hole can only have mass, spin and electrical charge. Last year, we were able to unambiguously prove the existence and determine the mass of the galactic center black hole.

"If our assumption is correct that the periodicity (of the flares) is the fundamental orbital time of the accreting gas, we now have also measured its spin for the first time. And that turns out to be about half of the maximum spin that general relativity allows."

The observed flares repeated about every 17 minutes, implying that the central black hole rotates once about every 30 seconds, said Eliot Quataert, a UC Berkeley assistant professor of astronomy involved in theoretical modeling of the black hole accretion disk. For comparison, the sun, which is one-tenth the diameter of the black hole and several million times less massive, rotates about once every month, Quataert noted.

Scientists have never before been able to study phenomena in the immediate neighborhood of a black hole in such a detail. The new result is based on observations obtained with the NACO Adaptive Optics instrument on the 8.2-meter KUEYEN telescope of the European Southern Observatory’s Very Large Telescope (VLT) in Chile’s Atacama desert.

A separate team from UCLA reported last month in Astrophysical Journal that it had seen similar variability in infrared emissions from the galaxy’s central black hole using the adaptive optics on the W. M. Keck II telescope in Hawaii. Adaptive optics allows telescopes to overcome the image distortions in the optical/infrared wavelength region caused by the turbulent terrestrial atmosphere. By flexing a deformable mirror, adaptive optics on the VLT produces an image about 10 times sharper in the near-infrared than with conventional observations, and about four times sharper than the Hubble Space Telescope working at this wavelength.

"Now the era of observational black hole physics has truly begun," Genzel said.

"These observations, reflecting similar patterns seen earlier in X-rays, open a new window on this enigmatic source," said Ramesh Narayan of the Harvard-Smithsonian Center for Astrophysics, in a commentary that also appears in this week’s Nature.

"We had been looking for infrared emission from that black hole for more than a decade," said team member Andreas Eckart of Cologne University in Germany. "We were certain that the black hole must be accreting matter from time to time. As this matter falls towards the surface of the black hole, it gets hotter and hotter and starts emitting infrared radiation."

The near-infrared emissions were observed on May 9, 2003, coming from a bright radio source at the galactic core known as Sagittarius A*, or SgrA*.

"Our data give us unprecedented information about what happens just outside the event horizon and let us test the predictions of general relativity," explained Daniel Rouan, a team member from Paris-Meudon Observatory in France. "The most striking result is an apparent 17-minute periodicity in the light curves of two of the detected flares. If this periodicity is caused by the motion of gas orbiting the black hole, the inevitable conclusion is that the black hole must be rotating rapidly."

The rapid variability seen in the infrared data indicates that the region around the event horizon must have chaotic properties very much like those seen in thunderstorms or solar flares, the researchers said. In fact, wrote Narayan in his Nature commentary, the flares could be created by the same magnetic phenomenon, magnetic reconnection, that produces bright flares on the sun.

"The beauty of having a flaring source such as Sgr A* is that each flare provides a new and independent view of the underlying physical processes," he wrote. "So by collecting and studying data on many flares, we may learn much more than from a steady source."

Genzel’s coauthors, in addition to Eckart and Rouan, are Rainer Schödel, T. Ott and B. Aschenbach of the Max-Planck Institute, T. Alexander of the Weizmann Institute of Science in Israel, and F. Lacombe of the Observatoire de Paris.

Robert Sanders | UC Berkeley News
Further information:
http://www.berkeley.edu/news/media/releases/2003/10/29_flares.shtml
http://www.berkeley.edu/news/media/releases/2002/10/23_bhole.html

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>