Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another giant solar explosion follows Tuesday’s enormous solar flare

31.10.2003


Since Tuesday 28 October, explosive events originating from the Sun have been bathing the Earth and its surroundings in high energy radiation.



Although 150 million kilometers away, the Sun is still capable of causing major disruption here on Earth to a range of systems that we depend on in everyday life. These include communication and navigation systems, aircraft and spacecraft operations and the distribution of electricity at high latitudes.

The activity started on Tuesday with a giant solar flare - the second biggest ever seen by SOHO, the ESA-NASA solar observatory that maintains a constant watch on the Sun, monitoring these events as they happen. A few minutes later, spacecraft circling the Earth began to detect high levels of energetic radiation, capable of blinding satellites and causing increased radiation levels down to normal aircraft cruising altitudes.


About 24 hours after the solar flare was observed, an accompanying coronal mass ejection - a giant cloud of magnetised plasma - reached the Earth, causing rapid changes in the Earth’s magnetic field and what is known as a geomagnetic storm. This storm caused widespread disruption to communications; both satellite-based and HF radio.

These events are truly sporadic and extremely difficult to predict. On Wednesday it appeared that radiation levels were decreasing. However, a second flare overnight has caused a further sharp increase in radiation levels. Here on Earth, the disruption continues today with a further coronal mass ejection expected to reach the Earth tomorrow in time for Halloween.

Solar eruptions of this type together with the associated increased radiation levels and electromagnetic disturbances around the Earth have real immediate and long-term economic impacts. During the last few days, space weather related problems have been detected on spacecraft operated by a range of agencies across the globe and operations teams are on alert. On Earth, telecommunication links have been disrupted and steps have been taken to safeguard aircraft, which including some changes in scheduling. Effects have also been detected in high latitude power grids and are being carefully monitored.

The increased dependency of our society on systems which are directly or indirectly influenced by solar and other events seen in space raises concerns about our ability to monitor and anticipate these events and the resulting changes collectively referred to as space weather. At the European Space Agency these issues are being handled jointly in the Electromagnetics and Space Environment Division by Dr Eamonn Daly’s group for the specifications of spacecraft protection and in the spacecraft operations teams.

In addition, Europe-wide coordination is currently being set up together with the European Union via its COST (Coordination in Science and Technology) programme and ESA’s General Studies Programme. This coordination aims to optimise our existing resources (together with our international partners) in order to develop an operational resource which will enable society to respond effectively to immediate as well as long-term changes in our space weather.

For further information, please contact :

ESA Media Relations Service
Tel: +33(0)1.53.69.7155
Fax: +33(0)1.53.69.7690

Franco Bonacina | ESA
Further information:
http://www.esa.int/export/esaCP/SEM6N9WLDMD_Protecting_0.html

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>