Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mega Starbirth Cluster Is Biggest, Brightest And Hottest Ever Seen

30.10.2003


A mysterious arc of light found behind a distant cluster of galaxies has turned out to be the biggest, brightest and hottest star-forming region ever seen in space.


Artist’s impression of the Lynx Arc



The so-called Lynx Arc is one million times brighter than the well-known Orion Nebula, a nearby prototypical ’starbirth’ region visible with small telescopes. The newly identified super-cluster contains a million blue-white stars that are twice as hot as similar stars in our Milky Way galaxy. It is a rarely glimpsed example of the early days of the Universe where furious firestorms of starbirth blazed across the skies. The spectacular cluster’s opulence is dimmed when seen from Earth only by the fact that it is 12 000 million light years away.

The discovery of this unique and tantalising object was the result of a systematic study of distant clusters of galaxies carried out with major X-ray, optical and infrared telescopes, including the NASA/ESA Hubble Space Telescope, ROSAT and the Keck Telescopes. Bob Fosbury, of the European Space Agency’s Space Telescope-European Coordinating Facility in Germany, and a team of international co-authors report the discovery in the 20 October 2003 issue of the Astrophysical Journal.


The mega-cluster of stars appears as a puzzling red arc behind a distant galaxy cluster 5400 million light-years away in the northern constellation of Lynx. The arc is the stretched and magnified image of a mysterious celestial object about 12 000 million light-years away (at a redshift of 3.36), far beyond the cluster of galaxies. This means that the remote source existed when the Universe was less than 2000 million years old.

Fosbury and colleagues first tried to identify the arc by analysing the light from the object, but the team was not able to recognise the pattern of colours in the spectral signature of the remote object. While looking for matches with the colour spectrum, Fosbury realised that the light was related to that of the nearby Orion Nebula, a star-forming region in our own Milky Way. However where the Orion Nebula is powered by only four hot and bright blue stars, the Lynx Arc must contain around a million such stars!

Furthermore, the spectrum shows that the stars in the Lynx Arc are more than twice as hot as the Orion Nebula’s central stars, with surface temperatures up to 80 000°C. Though there are much bigger and brighter star-forming regions than the Orion Nebula in our local Universe, none are as bright as the Lynx Arc, nor do they contain such large numbers of hot stars.

Even the most massive, normal nearby stars are no hotter than around 40 000°C. However, stars forming from the original, pristine gas in the early Universe can be more massive and consequently much hotter - perhaps up to 120 000°C. The earliest stars may have been as much as several hundred solar masses, but the chemical make-up of the Universe today prevents stars from forming beyond about 100 solar masses.

Such ’primordial’ super-hot stars are thought to be the first luminous objects to condense after the Big Bang cooled. Astronomers believe that these first ’monster’ stars formed considerably earlier than the Lynx Arc - up to 1800 million years earlier. "This remarkable object is the closest we have come so far to seeing what such primordial objects might look like when our telescopes become powerful enough to see them," says Fosbury. The desire to find and study the first luminous objects in the Universe is the main scientific drive behind the construction of the NASA/ESA/CSA James Webb Space Telescope, scheduled for launch in 2011.

| ESA
Further information:
http://www.esa.int/export/esaCP/SEMPI8WLDMD_FeatureWeek_0.html

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>