Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Little Chaos May Go a Long Way in Future Fusion Energy Reactors

28.10.2003


45th Annual Meeting of the Division of Plasma Physics


Application of ergodic magnetic field suppresses ELMs.



In work that makes practical, large-scale fusion energy production increasingly feasible, plasma physicists working at DOE’s DIII-D National Fusion Facility in San Diego are using a little chaos to prevent precious energy from escaping fusion energy devices.

In a magnetic fusion device, or tokamak, one of the most crucial regions for reducing the loss of heat and particles is at the plasma region’s edge. Particle crossing this edge leave the plasma, and carry energy with them, degrading the fusion reactor’s walls, and making it harder for the desired fusion energy production to occur. This problem will only increase for next-generation fusion energy machines such as the proposed ITER facility.


As the energy content of the fusion fuel increases, plasma in the edges has a tendency to become unstable, exhibiting a kind of turbulence that physicists call "Edge Localized Modes", commonly referred to as ELMs. In experiments presented this week, an international team of researchers applied chaotic magnetic fields, in which the field lines point in unpredictable directions, to a small edge region of the plasma in the DIII-D experiment. With the chaotic magnetic field they applied, the researchers significantly reduced the ELM instabilities in the DIII-D plasma, enabling more heat to stay trapped in the fusion fuel and preserving the favorable conditions that allow fusion energy production to occur. Assuming that this approach can be extended to next-step fusion energy devices, it holds the promise of increasing the lives of materials that make up fusion-energy device walls without degrading the performance of the plasma fuel.

Contacts
T. E. Evans, General Atomics, 505-842-1234, evans@fusion.gat.com
T. S. Taylor, General Atomics, taylor@fusion.gat.com
Paul Thomas, CEA, France, paul.richard.thomas@gat.com

David Harris | American Physical Society
Further information:
http://www.aps.org/meet/DPP03/baps/abs/S1880037.html
http://www.aps.org/meet/DPP03/baps/abs/S1880038.html
http://gk.umd.edu/DPP/press2.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>