Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new entry in the science X-games

28.10.2003


45th Annual Meeting of the Division of Plasma Physics




The emerging field of high energy density physics has been described by a recent National Academy of Science report as the "X-games" of contemporary science. The term high energy density is used to describe matter with pressures more than 1 million times the pressure on the surface of the earth. While high energy density matter is extreme by terrestrial standards, it can be found throughout the universe in a number of astrophysical settings and can be made for short times and within small volumes in the laboratory. In an invited talk on Monday morning Mark Herrmann of DOE’s Lawrence Livermore National Laboratory will describe recent expaeriments that provide a new entry for the "X-games": the laser driven dynamic hohlraum.

The new entry, called a laser driven dynamic hohlraum, consists of a spherical, laser-driven implosion of a plastic shell filled with xenon. As this thin shell implodes it sweeps up the xenon and causes it to radiate x-rays. When enough radiating xenon has been swept up, the xenon begins to trap x-ray radiation on the inside, creating a time-evolving cavity of intense x-rays -- a dynamic hohlraum. With this technique, it may be possible to achieve very high energy densities on experiments at the National Ignition Facility, which began initial physics operations this year.


The initial experiments testing this concept have been carried out using the OMEGA laser at the University of Rochester’s Laboratory for Laser Energetics. Forty beams of OMEGA are used to directly drive a thin capsule filled with xenon gas (left panel). A shock is driven in the xenon, which radiates so strongly that it collapses to a thin dense layer. This dense xenon layer traps x-rays. An image is generated by 10 of the remaining beams (right panel). Initially a low level of signal may be seen due to the self-emission from the laser-heated plastic. After the drive beams turn off the radiography beams are turned on, and the remaining plastic and the thin, dense, shock in the Xenon may be seen as dark shadows. A region of low density plastic that has been created by the radiating shock separates the two dark bands. Simulations of this concept predict a hollow region that is in good agreement with the experiment.

Contacts
Mark Herrmann, LLNL, 925-422-6999

David Harris | American Physical Society
Further information:
http://www.aps.org/meet/DPP03/baps/abs/S120003.html
http://gk.umd.edu/DPP/press5.html

More articles from Physics and Astronomy:

nachricht Spiral arms: not just in galaxies
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>