Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large asteroid is two orbiting objects

24.10.2003


An asteroid that has eluded astronomers for decades turns out to be an unusual pair of objects traveling together in space, a UCLA planetary scientist and colleagues report.



The asteroid Hermes was rediscovered last week after being lost for 66 years. Now Jean-Luc Margot, a researcher in UCLA’s department of Earth and space sciences, has determined that the asteroid is, in fact, two objects orbiting each other. The two objects together would cover an area approximately the size of Disneyland.

Margot and colleagues are analyzing new radar measurements from the Arecibo Observatory, part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. The researchers are scheduled to obtain additional measurements Oct. 25–26 from the observatory, located in Puerto Rico.


Hermes makes frequent close approaches to Earth, Venus and Mars, as well as Vesta, the third-largest asteroid in the main asteroid belt between Mars and Jupiter.

While several other asteroids have satellites, the other known binaries with trajectories that cross the orbit of the Earth consist of a large primary asteroid orbited by a much smaller one.

"Hermes is the first asteroid ever discovered in the near-Earth population where the two components are essentially equal in size," Margot said. "It’s a very unusual binary, a puzzle. It may have formed when it swung so close to a planet that it was ripped apart by gravitational forces, but we don’t know for sure. One of our goals is to learn more about the two components and how they rotate about each other in the hopes that we may be able to deduce how Hermes became a double asteroid.

"Because the components are close to each other, they raise appreciable tides in each other and each has slowed down the other’s spin significantly. They are now likely in a doubly synchronous state, where their spin period is equal to their orbital period. This means they constantly present the same face to each other, just like Pluto and its satellite Charon."

A fast-moving bright object was observed in 1937, named Hermes, and went undetected until last week, although it had revolved around the Sun almost 31 times since then, escaping notice, said Brian Marsden, of the Minor Planet Center in Cambridge, Mass.

On Oct. 15, Brian Skiff of the Lowell Observatory Near-Earth-Object Search sighted the mysterious object; Timothy Spahr at the Minor Planet Center identified similarities with the 1937 observations; and Steven Chesley and Paul Chodas at NASA’s Jet Propulsion Laboratory (JPL) linked the observations to Hermes.

The same day, Margot and his team proposed to observe the asteroid with the Arecibo Observatory’s high-powered radar system -- a proposal that was accepted within hours.

The goals of the proposal were to measure precisely the distance and velocity of this object, to improve the knowledge of its trajectory and help trace back its history, to characterize Hermes’ physical properties, and to search for satellites.

Margot and collaborators have been given five sessions at Arecibo and sessions at the Goldstone radar in California to observe Hermes. Due to the urgent nature of the proposal, Margot observed from his home computer while Mike Nolan, Victor Negron, Alice Hine and Don Campbell were at the Arecibo telescope.

Hermes gets as close as 378 000 miles from Earth -- which, in astronomical terms, is quite close, about 1.6 times the distance between Earth and the moon. Orbits can change appreciably over time due to gravitational influences of the planets, noted Mike Nolan, an Arecibo Observatory scientist and member of the team.

Hermes travels on an elliptical orbit and reaches deep into the inner solar system, crossing Venus’ orbit. The new research has made it possible to extend the time interval over which the trajectory can be computed reliably, said Jon Giorgini, a senior engineer at JPL and member of the team.

"As far as impact risk, there is no cause for worry in our lifetimes," Giorgini said. "Over hundreds of thousands, or millions of years, Hermes could impact the Earth, but only if it doesn’t hit Venus first."

Margot and colleagues described their observations and data in an International Astronomical Union Circular this week. Margot’s research is funded by NASA. His co-authors are Michael Nolan, Victor Negron, Alice Hine, Donald Campbell and Ellen Howell at the National Astronomy and Ionosphere Center; Lance Benner, Steven Ostro and Jon Giorgini at JPL; and Brian Marsden at the Minor Planet Center.

Stuart Wolpert | EurekAlert!
Further information:
http://www2.ess.ucla.edu/~jlmargot/NEAs/Hermes

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>