Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA’s Integral discovers hidden black holes

20.10.2003


Integral, ESA’s powerful gamma-ray space telescope, has discovered what seems to be a new class of astronomical objects.


An artist’s impression of the mechanisms in an interacting binary system. The supermassive companion star (on the right-hand side) ejects a lot of gas in the form of ’stellar wind’. The compact black hole orbits the star and, due to its strong gravitational attraction, collects a lot of the gas. Some of it is funnelled and accelerated into a hot disc. This releases a large amount of energy in all spectral bands, from gamma rays through to visible and infrared. However, the remaining gas surrounding the black hole forms a thick cloud which blocks most of the radiation. Only the very energetic gamma rays can escape and be detected by Integral.



These are binary systems, probably including a black hole or a neutron star, embedded in a thick cocoon of cold gas. They have remained invisible so far to all other telescopes. Integral was launched one year ago to study the most energetic phenomena in the universe.
Integral detected the first of these objects, called IGRJ16318-4848, on 29 January 2003. Although astronomers did not know its distance, they were sure it was in our Galaxy. Also, after some analysis, researchers concluded that the new object could be a binary system comprising a compact object, such as a neutron star or a black hole, and a very massive companion star.

When gas from the companion star is accelerated and swallowed by the more compact object, energy is released at all wavelengths, from the gamma rays through to visible and infrared light. About 300 binary systems like those are known to exist in our galactic neighbourhood and IGRJ16318-4848 could simply have been one more. But something did not fit: why this particular object had not been discovered so far?



Astronomers, who have been observing the object regularly, guess that it had remained invisible because there must be a very thick shell of obscuring material surrounding it. If that was the case, only the most energetic radiation from the object could get through the shell; less-energetic radiation would be blocked. That could explain why space telescopes that are sensitive only to low-energy radiation had overlooked the object, while Integral, specialised in detecting very energetic emissions, did see it.

To test their theory, astronomers turned to ESA’s XMM-Newton space observatory, which observes the sky in the X-ray wavelengths. As well as being sensitive to high-energy radiation, XMM-Newton is also able to check for the presence of obscuring material. Indeed, XMM-Newton detected this object last February, as well as the existence of a dense ’cocoon’ of cold gas with a diameter of similar size to that of the Earth’s orbit around the Sun.

This obscuring material forming the cocoon is probably ’stellar wind’, namely gas ejected by the supermassive companion star. Astronomers think that this gas may be accreted by the compact black hole, forming a dense shell around it. This obscuring cloud traps most of the energy produced inside it.

The main author of these results, Roland Walter of the Integral Science Data Centre, Switzerland, explained: "Only photons with the highest energies [above 10 keV] could escape from that cocoon. IGR J16318-4848 has therefore not been detected by surveys performed at lower energies, nor by previous gamma-ray missions that were much less sensitive than Integral."

The question now is to find out how many of these objects lurk in the Galaxy. XMM-Newton and Integral together are the perfect tools to do the job. They have already discovered two more new sources embedded in obscuring material. Future observations are planned.

Christoph Winkler, ESA Project Scientist for Integral, said: "These early examples of using two complementary ESA high-energy missions, Integral and XMM-Newton, shows the potential for future discoveries in high-energy astrophysics."

Christoph Winkler | ESA
Further information:
http://www.esa.int/export/esaCP/SEMPHV1P4HD_index_0.html

More articles from Physics and Astronomy:

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

nachricht Filling the early universe with knots can explain why the world is three-dimensional
17.10.2017 | Vanderbilt University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>