Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Only 15 minutes of life, no fame, for lone neutrons

15.10.2003


Once freed from its home inside the nucleus of an atom, a neutron lives on average 886.8 seconds (about 14.8 minutes), plus or minus 3.4 seconds, according to recent measurements performed at the National Institute of Standards and Technology.



This result, published in the Oct. 10 issue of Physical Review Letters, is the most precise ever achieved using beams of neutrons and is the culmination of almost 10 years of work. The new neutron lifetime value is consistent with physicists’ current theories about the particles and forces of nature. It also will help scientists better understand the creation of matter immediately after the birth of the universe, an important factor in determining what the universe is made of today.

Scientists have been measuring the lifetime of the neutron since the early 1950s. While slightly less precise than a measurement made in 2000 by a different research group using a different method, the in-beam technique provides a strong, independent check on the neutron lifetime and reduces the overall uncertainty in the recommended value.


As neutrons die, they disintegrate into other particles, including protons. The NIST-led group simultaneously counted both the number of neutrons and the number of protons formed as the neutrons fell apart. A beam of slow moving neutrons was passed through a vacuum system. As the neutrons decayed, protons---which have a positive charge---formed and were captured in a powerful electromagnetic trap. Periodically the trap was opened and the protons were counted as they crashed into a semiconductor detector, producing an electrical signal.

The research team included participants from NIST, Tulane University, Indiana University, University of Tennessee/Oak Ridge National Laboratory, and the European Commission’s Joint Research Centre (Institute for Reference Materials and Measurements) in Belgium.



The research was funded by NIST, the U.S. Department of Energy and the National Science Foundation.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>