Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Only 15 minutes of life, no fame, for lone neutrons


Once freed from its home inside the nucleus of an atom, a neutron lives on average 886.8 seconds (about 14.8 minutes), plus or minus 3.4 seconds, according to recent measurements performed at the National Institute of Standards and Technology.

This result, published in the Oct. 10 issue of Physical Review Letters, is the most precise ever achieved using beams of neutrons and is the culmination of almost 10 years of work. The new neutron lifetime value is consistent with physicists’ current theories about the particles and forces of nature. It also will help scientists better understand the creation of matter immediately after the birth of the universe, an important factor in determining what the universe is made of today.

Scientists have been measuring the lifetime of the neutron since the early 1950s. While slightly less precise than a measurement made in 2000 by a different research group using a different method, the in-beam technique provides a strong, independent check on the neutron lifetime and reduces the overall uncertainty in the recommended value.

As neutrons die, they disintegrate into other particles, including protons. The NIST-led group simultaneously counted both the number of neutrons and the number of protons formed as the neutrons fell apart. A beam of slow moving neutrons was passed through a vacuum system. As the neutrons decayed, protons---which have a positive charge---formed and were captured in a powerful electromagnetic trap. Periodically the trap was opened and the protons were counted as they crashed into a semiconductor detector, producing an electrical signal.

The research team included participants from NIST, Tulane University, Indiana University, University of Tennessee/Oak Ridge National Laboratory, and the European Commission’s Joint Research Centre (Institute for Reference Materials and Measurements) in Belgium.

The research was funded by NIST, the U.S. Department of Energy and the National Science Foundation.

Laura Ost | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>