Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not your father’s periodic table

14.10.2003


Dimitri Mendeleev, a Russian, and Lothar Meyer, a German, published early versions of periodic tables in 1869 and 1870, respectively. Well, roll over, Mendeleev, tell Meyer the news: Washington University’s Katharina Lodders has developed an innovative periodic table, slanted toward astronomy, that’s definitely not your father’s periodic table.
David Kilper/WUSTL photo


Dimitri Mendeleev
Courtesy photo


Revised periodic table slanted toward astronomers

The periodic table isn’t what it used to be, thanks to innovations by a planetary chemist at Washington University in St. Louis.

Katharina Lodders, Ph.D., Washington University research associate professor in Earth and Planetary Sciences in Arts & Sciences, has evalutated data from numerous studies including her own and arranged the data into a periodic table slanted toward astronomers and cosmochemists. It’s the Cosmochemical Periodic Table of the Elements in the Solar System. Instead of atomic number, atomic weights, and melting- and boiling points, for example, Lodders provides elemental abundances and condensation temperatures. And it’s color-coded to indicate host phases of the elements - the phase where the element condenses into metal, sulfide, or silicate rock.



It’s an outright work of art, definitely not your father’s periodic table

"For the first time, there is a periodic table providing self-consistent data for abundances and condensation temperatures," she said. "The idea was to combine everything for easy comparison and quick reference."

It’s one-stop shopping for astronomers and cosmochemists, a sort of Sam’s Club for researchers of the cosmos. The table will be very valuable for researchers modeling planets and planetary satellites, meteorites and asteroids, and other stars and solar systems. And it also is beneficial because the abundances of elements presented in the table reflect the latest developments in astronomy. One of the most recent influential findings is that the heavier elements - everything heavier than helium - in the sun’s outer layer, its photosphere, settle towards its interior.

Because the sun contains more than 99 percent of the entire mass of the solar system, the composition of the sun tells astronomers much of what they need to know of the whole solar system. But if the heavy elements settled from the photosphere, researchers can no longer use the photospheric abundances observed today as representative of solar system abundances about 4.5 billion years ago when the planets formed.

Lodders takes that into account. In her table for the abundances and the condensation temperatures, she calculated for the new abundance set. In part, she used results from models of the sun’s evolution to assemble the abundance data together with recent redeterminations of several important elemental abundances, including the key biogenic elements carbon, oxygen, and nitrogen.

"It turns out that these abundances are only roughly half of that previously thought," she said. "This is important because if the abundances of carbon and oxygen, a major fraction of the heavy elements in the sun and solar system, have been revised downward, then there will be changes introduced in the amount of condensates that can form and in the amount of oxygen tied up into rocky condensates and ices.

"If I use the old abundances, about 15 percent of the total oxygen goes into rock, but now it’s about 23 percent oxygen that can go into rocky condensates. This means less oxygen is available to form ices, which is an important consequence for modeling all of the chemistry of the outer solar system - giant planets, their satellites and other icy bodies such as comets."

Lodders’ table made its debut in July 31, 2003 at the Meteoritical Society Meeting in Munster, Germany. All of the data appear in table and text in "Solar System Abundances and Condensation Temperatures of the Elements," published July 10, 2003, in The Astrophysical Journal.

"This table reflects the work of many astronomers and cosmochemists going back to the ’60s and ’70s, and abundance determinations and condensation modeling are continuing," said Lodders. "But the abundance tables and the related condensation temperatures needed desperate updating because of all the new developments. It was time to put it all together."

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/424.html
http://www.wustl.edu/

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>