Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not your father’s periodic table

14.10.2003


Dimitri Mendeleev, a Russian, and Lothar Meyer, a German, published early versions of periodic tables in 1869 and 1870, respectively. Well, roll over, Mendeleev, tell Meyer the news: Washington University’s Katharina Lodders has developed an innovative periodic table, slanted toward astronomy, that’s definitely not your father’s periodic table.
David Kilper/WUSTL photo


Dimitri Mendeleev
Courtesy photo


Revised periodic table slanted toward astronomers

The periodic table isn’t what it used to be, thanks to innovations by a planetary chemist at Washington University in St. Louis.

Katharina Lodders, Ph.D., Washington University research associate professor in Earth and Planetary Sciences in Arts & Sciences, has evalutated data from numerous studies including her own and arranged the data into a periodic table slanted toward astronomers and cosmochemists. It’s the Cosmochemical Periodic Table of the Elements in the Solar System. Instead of atomic number, atomic weights, and melting- and boiling points, for example, Lodders provides elemental abundances and condensation temperatures. And it’s color-coded to indicate host phases of the elements - the phase where the element condenses into metal, sulfide, or silicate rock.



It’s an outright work of art, definitely not your father’s periodic table

"For the first time, there is a periodic table providing self-consistent data for abundances and condensation temperatures," she said. "The idea was to combine everything for easy comparison and quick reference."

It’s one-stop shopping for astronomers and cosmochemists, a sort of Sam’s Club for researchers of the cosmos. The table will be very valuable for researchers modeling planets and planetary satellites, meteorites and asteroids, and other stars and solar systems. And it also is beneficial because the abundances of elements presented in the table reflect the latest developments in astronomy. One of the most recent influential findings is that the heavier elements - everything heavier than helium - in the sun’s outer layer, its photosphere, settle towards its interior.

Because the sun contains more than 99 percent of the entire mass of the solar system, the composition of the sun tells astronomers much of what they need to know of the whole solar system. But if the heavy elements settled from the photosphere, researchers can no longer use the photospheric abundances observed today as representative of solar system abundances about 4.5 billion years ago when the planets formed.

Lodders takes that into account. In her table for the abundances and the condensation temperatures, she calculated for the new abundance set. In part, she used results from models of the sun’s evolution to assemble the abundance data together with recent redeterminations of several important elemental abundances, including the key biogenic elements carbon, oxygen, and nitrogen.

"It turns out that these abundances are only roughly half of that previously thought," she said. "This is important because if the abundances of carbon and oxygen, a major fraction of the heavy elements in the sun and solar system, have been revised downward, then there will be changes introduced in the amount of condensates that can form and in the amount of oxygen tied up into rocky condensates and ices.

"If I use the old abundances, about 15 percent of the total oxygen goes into rock, but now it’s about 23 percent oxygen that can go into rocky condensates. This means less oxygen is available to form ices, which is an important consequence for modeling all of the chemistry of the outer solar system - giant planets, their satellites and other icy bodies such as comets."

Lodders’ table made its debut in July 31, 2003 at the Meteoritical Society Meeting in Munster, Germany. All of the data appear in table and text in "Solar System Abundances and Condensation Temperatures of the Elements," published July 10, 2003, in The Astrophysical Journal.

"This table reflects the work of many astronomers and cosmochemists going back to the ’60s and ’70s, and abundance determinations and condensation modeling are continuing," said Lodders. "But the abundance tables and the related condensation temperatures needed desperate updating because of all the new developments. It was time to put it all together."

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/424.html
http://www.wustl.edu/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>