Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find That Superman’s Teeth Can Superconduct

14.10.2003


Researchers at the University of Warwick have found that phosphorus, an element commonly found in teeth, can act as a “superconductor” – but you would have to have the strength of Superman to clench your teeth hard enough for it to work - as it happens at a pressure of around 2.5 megabars – some 30,000 times harder than an ordinary human can clench their teeth.



Physicists were aware that lower pressures of around 0.1 megabars could convert the electrically insulating phosphorus to a form which can conduct and which allows limited superconductivity at 10 degrees Kelvin and under. Recently experimentalists have found that another form of phosphorus occurs when 2.5 megabars of pressure is applied which causes it to form a “body centred cubic” or bcc crystal structure, comprised of stacks of interpenetrating cubes of phosphorus atoms. Common metals such as iron and chromium have this structure at normal pressures. However it was not known until now if this form of phosphorus would superconduct.

Now University of Warwick physicists Sergey Ostanin and Julie Staunton have used a number of theoretical physics techniques to describe the movement of the electrons and ionic vibrations, which proves that this version of phosphorus is an even better superconductor than the phosphorus held under 0.1 megabars of pressure. The University of Warwick researchers predict that the bcc structure of phosphorus will in fact superconduct at temperatures of around 14-22 Kelvin.


In their research paper in Physical Review Letters the University of Warwick researchers further suggest a clever means of preserving and using the bcc structure without having to resort to the high pressures. They suggest that the structure lends itself to being grown by depositing the atoms on a substrate of iron which itself organizes into a bcc structure. Anchoring the bcc phosphorus in this way would create and maintain its useful superconducting structure. Furthermore if the phosphorus bcc layer were positioned between a pair ferromagnets one could create a “superconducting switch” in which the phosphorus could be switched from superconductor to regular conductor and back again.

For further details please contact:

Dr Julie Staunton, Dept of Physics
University of Warwick
Tel: 024 76 523381
Email: j.b.staunton@warwick.ac.uk

Peter Dunn | University of Warwick
Further information:
http://ww.newsandevents.warwick.ac.uk/index.cfm?page=pressrelease&id=1380

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>