Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find That Superman’s Teeth Can Superconduct

14.10.2003


Researchers at the University of Warwick have found that phosphorus, an element commonly found in teeth, can act as a “superconductor” – but you would have to have the strength of Superman to clench your teeth hard enough for it to work - as it happens at a pressure of around 2.5 megabars – some 30,000 times harder than an ordinary human can clench their teeth.



Physicists were aware that lower pressures of around 0.1 megabars could convert the electrically insulating phosphorus to a form which can conduct and which allows limited superconductivity at 10 degrees Kelvin and under. Recently experimentalists have found that another form of phosphorus occurs when 2.5 megabars of pressure is applied which causes it to form a “body centred cubic” or bcc crystal structure, comprised of stacks of interpenetrating cubes of phosphorus atoms. Common metals such as iron and chromium have this structure at normal pressures. However it was not known until now if this form of phosphorus would superconduct.

Now University of Warwick physicists Sergey Ostanin and Julie Staunton have used a number of theoretical physics techniques to describe the movement of the electrons and ionic vibrations, which proves that this version of phosphorus is an even better superconductor than the phosphorus held under 0.1 megabars of pressure. The University of Warwick researchers predict that the bcc structure of phosphorus will in fact superconduct at temperatures of around 14-22 Kelvin.


In their research paper in Physical Review Letters the University of Warwick researchers further suggest a clever means of preserving and using the bcc structure without having to resort to the high pressures. They suggest that the structure lends itself to being grown by depositing the atoms on a substrate of iron which itself organizes into a bcc structure. Anchoring the bcc phosphorus in this way would create and maintain its useful superconducting structure. Furthermore if the phosphorus bcc layer were positioned between a pair ferromagnets one could create a “superconducting switch” in which the phosphorus could be switched from superconductor to regular conductor and back again.

For further details please contact:

Dr Julie Staunton, Dept of Physics
University of Warwick
Tel: 024 76 523381
Email: j.b.staunton@warwick.ac.uk

Peter Dunn | University of Warwick
Further information:
http://ww.newsandevents.warwick.ac.uk/index.cfm?page=pressrelease&id=1380

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>