Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB physicist devises way to observe protein folding

09.10.2003


Physicists are getting more involved in the fight against diseases by studying the folding of proteins, which they hope will eventually lead to the development of new drugs. Illnesses such as Alzheimer’s disease and even some cancers are the result of protein folding that has gone awry. Since proteins in the body perform different functions according to their shape, the folding process is considered a very important area of study.



Everett Lipman, a new assistant professor of physics at the University of California, Santa Barbara, recently co-authored an article in the journal Science, describing an innovative study of how to "see" proteins as they fold, the result of experiments performed with co-workers at the National Institutes of Health.

The machinery of life arises from interactions between protein molecules, whose functions depend on the three-dimensional shapes into which they fold, said Lipman. Although proteins are composed of just 20 different building blocks (the amino acids), the process by which a given sequence of these components adopts its unique structure is complex and poorly understood. Folding proteins are too small to view with a microscope, so the researchers used a method called Forster Resonance Energy Transfer, or FRET, to study them. Using a microfabricated silicon device and a microfluidic mixing technique, they were able to observe single protein molecules at various times after folding was triggered.


Two small molecules of fluorescent dye (red and green) were applied to amino acids in the protein. When the green dye was excited by a laser, it either emitted green light or transferred the energy to the red dye, causing it to light up. The green dye is a photon donor and the red dye is a photon acceptor. If the two dyes are close together, more red is emitted as the energy is transferred easily to the red. If they are far apart, more green light is emitted. The fraction of red counts shows how efficient the energy transfer is, which shows how close the ends of the molecule are to each other. By taking a sequence of measurements as the protein folds up, scientists can get a "picture" of the folding.

The group was the first to perform these single molecule measurements in microfluidic mixtures. "Once we have more understanding of the folding process, it will fill in a huge gap in our knowledge of how biological systems work," said Lipman. "However it will be a long time before this knowledge can be applied."

Lipman explained, "The fantastic advances in biology during the last century have brought us to the point where we have working knowledge of many fundamental processes. There remain, however, numerous details and enormous complexity of function and interaction that we have yet to comprehend. It has been the case in the past that the most precise information about biomolecular machinery has been uncovered using techniques of experimental physics, such as magnetic resonance and x-ray crystallography. As we progress toward understanding proteins and nucleic acids as complex physical systems, this will no doubt remain true."

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>