Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB physicist devises way to observe protein folding

09.10.2003


Physicists are getting more involved in the fight against diseases by studying the folding of proteins, which they hope will eventually lead to the development of new drugs. Illnesses such as Alzheimer’s disease and even some cancers are the result of protein folding that has gone awry. Since proteins in the body perform different functions according to their shape, the folding process is considered a very important area of study.



Everett Lipman, a new assistant professor of physics at the University of California, Santa Barbara, recently co-authored an article in the journal Science, describing an innovative study of how to "see" proteins as they fold, the result of experiments performed with co-workers at the National Institutes of Health.

The machinery of life arises from interactions between protein molecules, whose functions depend on the three-dimensional shapes into which they fold, said Lipman. Although proteins are composed of just 20 different building blocks (the amino acids), the process by which a given sequence of these components adopts its unique structure is complex and poorly understood. Folding proteins are too small to view with a microscope, so the researchers used a method called Forster Resonance Energy Transfer, or FRET, to study them. Using a microfabricated silicon device and a microfluidic mixing technique, they were able to observe single protein molecules at various times after folding was triggered.


Two small molecules of fluorescent dye (red and green) were applied to amino acids in the protein. When the green dye was excited by a laser, it either emitted green light or transferred the energy to the red dye, causing it to light up. The green dye is a photon donor and the red dye is a photon acceptor. If the two dyes are close together, more red is emitted as the energy is transferred easily to the red. If they are far apart, more green light is emitted. The fraction of red counts shows how efficient the energy transfer is, which shows how close the ends of the molecule are to each other. By taking a sequence of measurements as the protein folds up, scientists can get a "picture" of the folding.

The group was the first to perform these single molecule measurements in microfluidic mixtures. "Once we have more understanding of the folding process, it will fill in a huge gap in our knowledge of how biological systems work," said Lipman. "However it will be a long time before this knowledge can be applied."

Lipman explained, "The fantastic advances in biology during the last century have brought us to the point where we have working knowledge of many fundamental processes. There remain, however, numerous details and enormous complexity of function and interaction that we have yet to comprehend. It has been the case in the past that the most precise information about biomolecular machinery has been uncovered using techniques of experimental physics, such as magnetic resonance and x-ray crystallography. As we progress toward understanding proteins and nucleic acids as complex physical systems, this will no doubt remain true."

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>