Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Uncovers Smallest Moons Yet Seen Around Uranus

29.09.2003



Uranus, Rings and Satellites. Hubble Space Telescope


Astronomers have discovered two of the smallest moons yet found around Uranus. The new moons, uncovered by NASA’s Hubble Space Telescope, are about 8 to 10 miles across (12 to 16 km) — about the size of San Francisco.

The two moons are so faint they eluded detection by the Voyager 2 spacecraft, which discovered 10 small satellites when it flew by the gas giant planet in 1986. The newly detected moons are orbiting even closer to the planet than the five major Uranian satellites, which are several hundred miles wide. The two new satellites are the first inner moons of Uranus discovered from an Earth-based telescope in more than 50 years. The International Astronomical Union (IAU) will announce the finding today. The Hubble telescope observations also helped astronomers confirm the discovery of another tiny moon that had originally been spotted in Voyager pictures.

"It’s a testament to how much our Earth-based instruments have improved in 20 plus years that we can now see such faint objects 1.7 billion miles (2.8 billion km) away," says Mark Showalter, a senior research associate at Stanford University in Stanford, Calif., who works at the NASA Ames Research Center, in Moffett Field, Calif. Showalter and Jack Lissauer, a research scientist at the NASA Ames Research Center, used Hubble’s Advanced Camera for Surveys (ACS) to make the discovery. The images were taken Aug. 25, 2003.



The newly discovered moons are temporarily designated as S/2003 U 1 and S/2003 U 2 until the IAU formally approves their discovery. S/2003 U 1 is the larger of the two moons, measuring 10 miles (16 km) across. The Hubble telescope spotted this moon orbiting between the moons Puck, the largest satellite found by Voyager, and Miranda, the innermost of the five largest Uranian satellites. Astronomers previously thought this region was empty space. S/2003 U 1 is 60,600 miles (97,700 km) away from Uranus, whirling around the giant planet in 22 hours and 9 minutes.

The smallest Uranian moon yet found, S/2003 U 2, is 8 miles (12 km) wide. Its orbital path is just 200 to 450 miles (300 to 700 km) from the moon Belinda. S/2003 U 2 is 46,400 miles (74,800 km) away from Uranus and circles the planet in 14 hours and 50 minutes. The tiny moon is part of a densely crowded field of 11 other moons, all discovered from pictures taken by the Voyager spacecraft.

"The inner swarm of 13 satellites is unlike any other system of planetary moons," says co-investigator Jack Lissauer. "The larger moons must be gravitationally perturbing the smaller moons. The region is so crowded that these moons could be gravitationally unstable. So, we are trying to understand how the moons can coexist with each other."

One idea is that some of the moons are young and formed through collisions with wayward comets. For example, the Hubble telescope spotted two small moons orbiting very close to the moon Belinda. One of them is the newly detected moon, S/2003 U 2, which is traveling inside Belinda’s orbit. The other, designated S/1986 U 10, was found in 1999 by astronomer Erich Karkoschka of the University of Arizona, who uncovered the satellite in Voyager pictures. But the finding required confirmation by an Earth-based telescope. This is the first time this moon has been seen since Voyager snapped a picture of it. S/1986 U 10 is 750 miles (1,200 km) away from Belinda.

"Not all of Uranus’s satellites formed over 4 billion years ago when the planet formed," Lissauer says. "The two small moons orbiting close to Belinda, for example, probably were once part of Belinda. They broke off when a comet smashed into Belinda."

The astronomers hope to refine the orbits of the newly discovered moons with further observations. "The orbits will show how the moons interact with one another, perhaps showing how such a crowded system of satellites can be stabilized," Showalter explains. "This could provide further insight into how the moon system formed. Refining their orbits also could reveal whether these moons have any special role in confining or ’shepherding’ Uranus’s 10 narrow rings."

Astronomers stretched the limit of Hubble’s ACS to find the tiny satellites. "These moons are 40 million times fainter than Uranus," Showalter says. "The moons are at 25th magnitude and Uranus is at sixth magnitude. They are blacker than asphalt, if their composition is like the other small, inner moons. So they don’t reflect much light. Even with the sensitivity and high resolution of Hubble’s ACS, we had to overexpose the images of Uranus to pinpoint the moons."

The newly detected moons, when approved by the IAU, will bring the Uranian satellite total to 24. Uranus ranks third in the number of IAU-certified moons behind Jupiter (38) and Saturn (30). Excluding the outer moons that travel in elongated orbits and are probably captured asteroids, Uranus holds the record for the most satellites with 18 in its inner system. All of them have nearly circular orbits. Saturn is second with 17.

Contact:

Donna Weaver
Space Telescope Science Institute, Baltimore, MD
Phone: 410-338-4493; E-mail: dweaver@stsci.edu

Kathleen Burton
NASA Ames Research Center, Moffett Field, CA
Phone: 650-604-1731; E-mail: Kathleen.M.Burton@nasa.gov

Mark Showalter
Stanford University and NASA Ames Research Center
Phone: 650-604-3382; E-mail: Mshowalter@mail.arc.nasa.gov

Jack Lissauer
NASA Ames Research Center
Phone: 650-604-2293; E-mail: jlissauer@ringside.arc.nasa.gov

M. Showalter | Hubble Site
Further information:
http://hubblesite.org
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>