Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Iron-clad’ evidence for spinning black hole

18.09.2003


’Iron-clad’ evidence for a spinning black hole


Telltale X-rays from iron may reveal if black holes are spinning or not, according to astronomers using NASA’s Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Observatory. The gas flows and bizarre gravitational effects observed near stellar black holes are similar to those seen around supermassive black holes. Stellar black holes, in effect, are convenient `scale models’ of their much larger cousins.

Black holes come in at least two different sizes. Stellar black holes are between five and 20 times the mass of the Sun. At the other end size scale, supermassive black holes contain millions or billions times the mass of our Sun. The Milky Way contains both a supermassive black hole at its center, as well as a number of stellar black holes sprinkled throughout the Galaxy.

At a press conference at the “Four Years of Chandra” symposium in Huntsville, Ala., Jon Miller of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. discussed recent results on the X-ray spectra, or distribution of X-rays with energy, from the iron atoms in gas around three stellar black holes in the Milky Way.



“Discovering the high degree of correspondence between stellar and supermassive black holes is a real breakthrough,” said Miller. “Because stellar black holes are smaller, everything happens about a million times faster, so they can be used as a test-bed for theories of how spinning black holes affect the space and matter around them.”

X-rays from a stellar black hole are produced when gas from a nearby companion star is heated to tens of millions of degrees as it swirls toward the black hole. Iron atoms in this gas produce distinctive X-ray signals that can be used to study the orbits of particles around the black hole. For example, the gravity of a black hole can shift the X-rays to lower energies.

“The latest work provides the most precise measurements yet of the X-ray spectra for stellar black holes,” said Miller. “These data help rule out competing explanations that do not require extreme gravitational effects, and provide the best look yet at the geometry of the space-time around a stellar black hole created by the death of a massive star.”

The orbit of a particle near a black hole depends on the curvature of space around the black hole, which also depends on how fast the black hole is spinning. A spinning black hole drags space around with it and allows atoms to orbit closer to the black hole than is possible for a non-spinning black hole.

The latest Chandra data from Cygnus X-1, the first stellar-size black hole discovered, show that the gravitational effects on the signal from the iron atoms can only be due to relativistic effects, and that some of the atoms no closer than 100 miles to the black hole. There was no evidence that the Cygnus X-1 black hole is spinning.

The XMM-Newton data from the black hole, XTE J1650-500, show a very similar distribution of iron atom X-rays with one important exception. More low energy X-rays from iron atoms are observed, an indication that some X-rays are coming from deep in the gravitational well around the black hole, as close as 20 miles to the black hole event horizon. This black hole must be spinning rapidly.

Chandra observations of a third stellar black hole, GX 339-4, have revealed that it is also spinning rapidly, and clouds of warm absorbing gas appear to be flowing away from the black hole at speeds of about three hundred thousand miles per hour. Such warm gas flows have been observed in the vicinity of supermassive black holes.

Previous observations of some supermassive black holes by Japan’s ASCA satellite, XMM-Newton and Chandra have indicated that they may also be rotating rapidly. The latest results presented by Miller indicate that the peculiar geometry of space around spinning stellar-mass black holes and supermassive black holes is remarkably similar. Stellar and supermassive black holes may be similar in other ways. Powerful jets of high-energy particles have been detected around both types of black holes.

Why do some stellar black holes spin rapidly and others not? One possibility is that differences in spin are imparted at birth when a massive star collapses. Another possibility is that the spin rate depends on how long the black hole has been devouring matter from its companion star, a process that makes the black hole spin faster. Black holes with more rapid spin, XTE J1650-500 and GX 339-4, have low-mass companion stars. These relatively long-lived stars may have been feeding the black hole for longer, allowing it to spin up to faster rates. Cygnus X-1 with its short-lived companion star may not have not time to spin up.

Miller is a National Science Foundation Astronomy & Astrophysics Postdoctoral Fellow. His primary collaborators in this work were Walter Lewin if the Massachusetts Institute of Technology in Cambridge, Andrew Fabian of the University of Cambridge, UK, and Chris Reynolds of the University of Maryland, College Park.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Steve Roy | MSFC News Center
Further information:
http://chandra.nasa.gov
http://chandra.harvard.edu
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2003/03-162.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>