Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supernovae survey provides new clues to nature of mysterious dark energy

17.09.2003


Type 1A supernovae: A tiny white dwarf, left, pulls gas from its companion star. When it grows to a critical size, it is consumed in a massive thermonuclear explosion


Courtesy of Lawrence Berkeley National Laboratory


Measurements of 11 exploding stars spread throughout the visible universe made by the Hubble Space Telescope confirm an earlier, ground-based study which produced the first evidence that the universe is not only expanding, but expanding at an increasing rate.

The new study, which has been posted online [http://www.arxiv.org/abs/astro-ph/0309368] and will soon appear in the Astrophysical Journal, also provides some tantalizing new insights into the nature of the mysterious repulsive force, dubbed dark energy, that appears to be propelling this run-away expansion.

“As far as the ultimate fate of the universe goes, the most straightforward conclusion is that over the next few billion years it is going to become an increasingly thin, cold and boring place,” says Robert Knop, the assistant professor of physics and astronomy at Vanderbilt University who led the analysis of the supernova data for the Supernova Cosmology Project (SCP), an international collaboration of 48 scientists directed from Lawrence Berkeley National Laboratory in California.



Using the Hubble Space Telescope, Knop and his colleagues measured the light curves and spectra of a special kind of exploding star, called a Type 1A supernova, that occurs in binary star systems made up of a normal star and a collapsed star called a white dwarf. Basically, the white dwarf pulls material from its companion until it reaches a critical size, at which point it is consumed in a giant thermonuclear explosion. Astronomers consider Type 1A supernovae to be so similar that their brightness provides a dependable gauge of their distance and so bright they are visible billions of light years away.

Knowing this, astronomers can get a good estimate of the distance of a Type 1A supernova by comparing its brightness curve with those of comparable stellar outbursts that have taken place nearby: The dimmer the image the greater the distance. Because it takes light time to travel these great, intergalactic distances, as astronomers look farther out into the universe they are also looking back in time. So the estimates of the distances of the supernovae also provides their approximate ages as well. By measuring the extent to which the light spectrum of each of these images has been shifted to longer, redder wavelengths – a phenomenon called redshift – the astronomers can determine how much the universe has expanded since the time when the star exploded. As the universe expands, the wavelength of light is stretched right along with the fabric of the space through which it is traveling. (For relatively nearby “local galaxies,” this redshift looks just like the Doppler shift produced by the velocity at which these galaxies are moving away from our galaxy.)

By comparing the redshifts and look-back times of the supernovae, the astronomers can measure the rate at which the universe is expanding. The fact that the exploding stars are dimmer and older than expected based on their redshift indicates that the universe is expanding at an increasing rate, something like raisins in a loaf of raisin bread that is rising faster and faster. The new study reinforces the initial discovery made five years ago that the expansion rate of the universe appears to be speeding up, rather than slowing down as most scientists had expected. The discovery was made independently by the Supernova Cosmology Project and a competing group, the High-Z Supernova Search Team.

One of the most serious criticisms of the initial studies was the possibility that dust from the distant galaxies may have dimmed the images of the supernovae enough to skew their results. This is called the “host-galaxy extinction hypothesis.”

The initial studies were done using data from supernovae obtained primarily with ground-based telescopes. Because the supernovae images obtained by the Hubble Space Telescope (HST) are unaffected by the Earth’s atmosphere, they are not only sharper and stronger than those taken from the ground, but also their colors are more accurate. The improved color measurements provided the scientists with a more stringent test of the host-galaxy extinction problem. In addition to absorbing and scattering the supernovae’s light, the galactic dust should also make a supernova’s light redder, much as the sun looks redder at sunset because of dust in the atmosphere. Because the Hubble data show no anomalous reddening with distance, Knop says, the supernovae "pass the test with flying colors."

"Limiting such uncertainties is crucial for using supernovae – or any other astronomical observations – to explore the nature of the universe," says Ariel Goobar, a member of SCP and a professor of particle astrophysics at Stockholm University in Sweden. The extinction test, says Goobar, "eliminates any concern that ordinary host-galaxy dust could be a source of bias for these cosmological results at high-redshifts."

The new analysis also provides tighter estimates of the relative density of matter and dark energy in the universe. Using straightforward assumptions, the initial studies estimated that the composition of the cosmos is 63 to 80 percent dark energy and 20 to 37 percent matter of all types. The new study narrows this range to 68 to 81 percent dark energy and 19 to 32 percent miscellaneous matter. In addition, the new data provides a more accurate measure of just how effective dark energy is at pushing the universe apart.

Among the numerous attempts to explain the nature of dark energy, some are allowed by these new measurements -- including the cosmological constant originally proposed by Albert Einstein -- but others are ruled out, including some of the simplest models of the theories known as quintessence.

The current study points the way to the next generation of supernova research: In the future, the SuperNova/Acceleration Probe, or SNAP satellite, is being designed to identify thousands of Type 1A supernovae and measure their spectra and their light curves from the earliest moments, through maximum brightness, until their light has died away. Saul Perlmutter, the astrophysicist at the Berkeley Lab who heads up the Supernova Cosmology Project, is leading an international group of collaborators who are developing SNAP with the support of the U.S. Department of Energy’s Office of Science.

David F. Salisbury | Vanderbilt University
Further information:
http://exploration.vanderbilt.edu/news/features/supernovae/news_supernovae.htm
http://www.arxiv.org/abs/astro-ph/0309368

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>