Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supernovae survey provides new clues to nature of mysterious dark energy

17.09.2003


Type 1A supernovae: A tiny white dwarf, left, pulls gas from its companion star. When it grows to a critical size, it is consumed in a massive thermonuclear explosion


Courtesy of Lawrence Berkeley National Laboratory


Measurements of 11 exploding stars spread throughout the visible universe made by the Hubble Space Telescope confirm an earlier, ground-based study which produced the first evidence that the universe is not only expanding, but expanding at an increasing rate.

The new study, which has been posted online [http://www.arxiv.org/abs/astro-ph/0309368] and will soon appear in the Astrophysical Journal, also provides some tantalizing new insights into the nature of the mysterious repulsive force, dubbed dark energy, that appears to be propelling this run-away expansion.

“As far as the ultimate fate of the universe goes, the most straightforward conclusion is that over the next few billion years it is going to become an increasingly thin, cold and boring place,” says Robert Knop, the assistant professor of physics and astronomy at Vanderbilt University who led the analysis of the supernova data for the Supernova Cosmology Project (SCP), an international collaboration of 48 scientists directed from Lawrence Berkeley National Laboratory in California.



Using the Hubble Space Telescope, Knop and his colleagues measured the light curves and spectra of a special kind of exploding star, called a Type 1A supernova, that occurs in binary star systems made up of a normal star and a collapsed star called a white dwarf. Basically, the white dwarf pulls material from its companion until it reaches a critical size, at which point it is consumed in a giant thermonuclear explosion. Astronomers consider Type 1A supernovae to be so similar that their brightness provides a dependable gauge of their distance and so bright they are visible billions of light years away.

Knowing this, astronomers can get a good estimate of the distance of a Type 1A supernova by comparing its brightness curve with those of comparable stellar outbursts that have taken place nearby: The dimmer the image the greater the distance. Because it takes light time to travel these great, intergalactic distances, as astronomers look farther out into the universe they are also looking back in time. So the estimates of the distances of the supernovae also provides their approximate ages as well. By measuring the extent to which the light spectrum of each of these images has been shifted to longer, redder wavelengths – a phenomenon called redshift – the astronomers can determine how much the universe has expanded since the time when the star exploded. As the universe expands, the wavelength of light is stretched right along with the fabric of the space through which it is traveling. (For relatively nearby “local galaxies,” this redshift looks just like the Doppler shift produced by the velocity at which these galaxies are moving away from our galaxy.)

By comparing the redshifts and look-back times of the supernovae, the astronomers can measure the rate at which the universe is expanding. The fact that the exploding stars are dimmer and older than expected based on their redshift indicates that the universe is expanding at an increasing rate, something like raisins in a loaf of raisin bread that is rising faster and faster. The new study reinforces the initial discovery made five years ago that the expansion rate of the universe appears to be speeding up, rather than slowing down as most scientists had expected. The discovery was made independently by the Supernova Cosmology Project and a competing group, the High-Z Supernova Search Team.

One of the most serious criticisms of the initial studies was the possibility that dust from the distant galaxies may have dimmed the images of the supernovae enough to skew their results. This is called the “host-galaxy extinction hypothesis.”

The initial studies were done using data from supernovae obtained primarily with ground-based telescopes. Because the supernovae images obtained by the Hubble Space Telescope (HST) are unaffected by the Earth’s atmosphere, they are not only sharper and stronger than those taken from the ground, but also their colors are more accurate. The improved color measurements provided the scientists with a more stringent test of the host-galaxy extinction problem. In addition to absorbing and scattering the supernovae’s light, the galactic dust should also make a supernova’s light redder, much as the sun looks redder at sunset because of dust in the atmosphere. Because the Hubble data show no anomalous reddening with distance, Knop says, the supernovae "pass the test with flying colors."

"Limiting such uncertainties is crucial for using supernovae – or any other astronomical observations – to explore the nature of the universe," says Ariel Goobar, a member of SCP and a professor of particle astrophysics at Stockholm University in Sweden. The extinction test, says Goobar, "eliminates any concern that ordinary host-galaxy dust could be a source of bias for these cosmological results at high-redshifts."

The new analysis also provides tighter estimates of the relative density of matter and dark energy in the universe. Using straightforward assumptions, the initial studies estimated that the composition of the cosmos is 63 to 80 percent dark energy and 20 to 37 percent matter of all types. The new study narrows this range to 68 to 81 percent dark energy and 19 to 32 percent miscellaneous matter. In addition, the new data provides a more accurate measure of just how effective dark energy is at pushing the universe apart.

Among the numerous attempts to explain the nature of dark energy, some are allowed by these new measurements -- including the cosmological constant originally proposed by Albert Einstein -- but others are ruled out, including some of the simplest models of the theories known as quintessence.

The current study points the way to the next generation of supernova research: In the future, the SuperNova/Acceleration Probe, or SNAP satellite, is being designed to identify thousands of Type 1A supernovae and measure their spectra and their light curves from the earliest moments, through maximum brightness, until their light has died away. Saul Perlmutter, the astrophysicist at the Berkeley Lab who heads up the Supernova Cosmology Project, is leading an international group of collaborators who are developing SNAP with the support of the U.S. Department of Energy’s Office of Science.

David F. Salisbury | Vanderbilt University
Further information:
http://exploration.vanderbilt.edu/news/features/supernovae/news_supernovae.htm
http://www.arxiv.org/abs/astro-ph/0309368

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>