Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was the Universe born in a Black Hole?

17.09.2003


The universe may have been created by an explosion within a black hole, according to a new theory by two mathematicians recently published in the Proceedings of the National Academy of Sciences of the U.S.A..



"It’s a mathematically plausible model which refines the standard model of the Big Bang," said Blake Temple, professor of mathematics at UC Davis and co-author of the paper with Joel Smoller, professor of mathematics at the University of Michigan.

In the standard model of cosmology, the universe burst into existence with the Big Bang about 13 billion years ago. Since then, the universe, which contains an infinite amount of matter and is infinite in extent, has been expanding in all directions.


In the new model, the Big Bang is an actual explosion within a black hole in an existing space. The shock wave of the explosion is expanding into an infinite space, leaving behind it a finite amount of matter. The universe is emerging from a white hole. The opposite of a black hole, a white hole throws matter out instead of sucking it in.

The shockwave and the universe beyond the black hole lies in our future. Eventually, the universe will emerge from the black hole as something like a supernova, but on an enormously large scale, Temple said.

The equations that describe a black hole were written by Albert Einstein as part of the General Theory of Relativity. Einstein’s equations work equally well if time runs forward or backwards. But explosive shockwaves, which include an increase in entropy, are time-irreversible. The new theory satisfies Einstein’s equations while allowing the universe to expand.

Whether the matter emerging from the white hole came from matter that previously fell into another black hole is an open question, Temple said.

"It is natural to wonder if there is a connection between the mass that disappears into black hole singularities and the mass that emerges from white hole singularities," Smoller and Temple wrote.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>