Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for dark matter and dark energy in the Universe

17.09.2003


Philosophical transactions a November issue

Organised and edited by Carlos Frenk, George Kalmus, Nigel Smith and Simon White

What is the universe made of? How is it expanding? What is the origin of galaxies and other cosmic large-scale structures? These questions and some tentative answers were the focus of the discussion meeting on The search for dark matter and dark energy in the Universe, held at The Royal Society on 22-23 January 2003.



Astronomers have known for many years that the predominant form of mass in the universe is dark matter, that is, matter that does not emit detectable electromagnetic radiation at any wavelength. Only recently, however, has it become possible to measure how much dark matter there is. These measurements are based on surveys of unprecedented numbers of galaxies combined with careful studies of tiny irregularities in the residual heat left over from the Big Bang, the cosmic microwave background radiation. These irregularities are imprints left in the radiation by the precursors of today’s galaxies. By contrasting the properties of the primeval irregularities with the large-scale distribution of galaxies, physicists can infer the amount of dark matter in the universe. The surprising result is that the density of dark matter falls short, by about a factor of three, from the critical value required to ensure that the cosmic expansion would eventually come to a halt.

Although we now know how much dark matter there is, its identity is still unknown. It is clear, however, that the dark matter cannot be the same sort of matter that we see in stars, planets and people. Such ordinary matter makes up only about 10 percent of the total. The search for the remaining 90 percent of the cosmic mass is intense and is taking place deep underground in well shielded laboratories around the world.

The combination of microwave background and galaxy data has recently produced another, perhaps even more perplexing result: our universe must contain not only dark matter but also a new form of energy which, in the absence of a better name, is often called ``dark energy.’ This gives rise to a cosmic repulsive force which counteracts the effect of gravity. Dark energy has dominated the overall evolution of the universe for the past 8 billion years or so, causing it to expand at an ever increasing rate. The origin of the dark energy is a profound mystery.

The Royal Society Discussion meeting brought together foremost world experts in cosmology and particle physics. They discussed the evidence for dark matter and dark energy, their effect on the expansion of the universe and on the properties of galaxies, speculate on the origin of the dark energy and describe experimental searches for the dark matter particles using ultra-high-technology devices. The meeting was pervaded by the certain knowledge that these are really exciting times in the quest for understanding the origin of our universe.

Rebecca Humphreys | Royal Society
Further information:
http://www.pubs.royalsoc.ac.uk
http://www.catchword.com/rsl/1364503X/previews/contp1-1.htm
http://www.lbl.gov/Science-Articles/Archive/Phys-HST-supernovae.html

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>