Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for dark matter and dark energy in the Universe

17.09.2003


Philosophical transactions a November issue

Organised and edited by Carlos Frenk, George Kalmus, Nigel Smith and Simon White

What is the universe made of? How is it expanding? What is the origin of galaxies and other cosmic large-scale structures? These questions and some tentative answers were the focus of the discussion meeting on The search for dark matter and dark energy in the Universe, held at The Royal Society on 22-23 January 2003.



Astronomers have known for many years that the predominant form of mass in the universe is dark matter, that is, matter that does not emit detectable electromagnetic radiation at any wavelength. Only recently, however, has it become possible to measure how much dark matter there is. These measurements are based on surveys of unprecedented numbers of galaxies combined with careful studies of tiny irregularities in the residual heat left over from the Big Bang, the cosmic microwave background radiation. These irregularities are imprints left in the radiation by the precursors of today’s galaxies. By contrasting the properties of the primeval irregularities with the large-scale distribution of galaxies, physicists can infer the amount of dark matter in the universe. The surprising result is that the density of dark matter falls short, by about a factor of three, from the critical value required to ensure that the cosmic expansion would eventually come to a halt.

Although we now know how much dark matter there is, its identity is still unknown. It is clear, however, that the dark matter cannot be the same sort of matter that we see in stars, planets and people. Such ordinary matter makes up only about 10 percent of the total. The search for the remaining 90 percent of the cosmic mass is intense and is taking place deep underground in well shielded laboratories around the world.

The combination of microwave background and galaxy data has recently produced another, perhaps even more perplexing result: our universe must contain not only dark matter but also a new form of energy which, in the absence of a better name, is often called ``dark energy.’ This gives rise to a cosmic repulsive force which counteracts the effect of gravity. Dark energy has dominated the overall evolution of the universe for the past 8 billion years or so, causing it to expand at an ever increasing rate. The origin of the dark energy is a profound mystery.

The Royal Society Discussion meeting brought together foremost world experts in cosmology and particle physics. They discussed the evidence for dark matter and dark energy, their effect on the expansion of the universe and on the properties of galaxies, speculate on the origin of the dark energy and describe experimental searches for the dark matter particles using ultra-high-technology devices. The meeting was pervaded by the certain knowledge that these are really exciting times in the quest for understanding the origin of our universe.

Rebecca Humphreys | Royal Society
Further information:
http://www.pubs.royalsoc.ac.uk
http://www.catchword.com/rsl/1364503X/previews/contp1-1.htm
http://www.lbl.gov/Science-Articles/Archive/Phys-HST-supernovae.html

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>