Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists determine large magellanic cloud galaxy formed similar to Milky Way

12.09.2003


An astronomer from the Lawrence Livermore National Laboratory, in collaboration with an international team of researchers, have discovered that a neighboring galaxy -- the Large Magellanic Cloud (LMC) -- appears to have formed with an old stellar halo, similar to how our very own Milky Way formed.



The oldest and most metal-poor Milky Way stars form a spherical halo where they move about like atoms in a hot gas, which in turn prompts two major formation scenarios of our galaxy: extended hierarchical accretion and rapid collapse. RR Lyrae stars, which are found both in the Milky Way and the LMC, are excellent tracers of old and metal-poor populations.

By measuring the movement of 43 RR Lyrae stars in the inner regions of the LMC, the team determined that a moving hot, metal-poor, old halo also exists in the LMC, suggesting that the Milky Way and smaller, more irregular galaxies like the LMC have similar early formation histories.


The research, titled "Kinematic Evidence for an Old Stellar Halo in the Large Magellanic Cloud," is featured in the Sept. 12 issue of Science.

Kem Cook of Livermore’s Institute of Geophysics and Planetary Physics and part of the Massive Compact Halo Objects (MACHO) team, which previously discovered the RR Lyrae stars in the LMC, noted that they are an easily identified tracer of an old, metal-poor population. The LMC is more than 160,000 light-years away from our galaxy.

"The bottom line is that the Large Magellanic Cloud seems to have had a similar early formation history as the Milky Way," Cook said. "It created a spherical component that is not rotationally supported, but the stars have high random velocities, like a hot gas."

Cook, along with scientists from Universidad Pontifica Catolica in Chile, the European Southern Observatory, Columbia Astrophysics Laboratory and the Mount Stromlo Observatory at The Australian National University, observed the LMC RR Lyrae stars in January 2003 and measured the radial velocity dispersion using the European Southern Obervatories VLT.

The large-velocity dispersion of the LMC RR Lyrae stars scales to the Milky Way RR Lyrae star’s velocity dispersion and indicates that metal-poor old stars in the LMC are distributed in a halo population.

Models of halo formation by accretion indicate that these old objects formed in small satellite galaxies that were subsequently accreted (eaten up) by the galaxy. Meanwhile, models of halo formation by dissipational collapse indicate that the halo formed rapidly before the disk collapsed. The researchers applied these models to smaller galaxies and observed a halo population in the LMC by its oldest objects.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>