Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists determine large magellanic cloud galaxy formed similar to Milky Way

12.09.2003


An astronomer from the Lawrence Livermore National Laboratory, in collaboration with an international team of researchers, have discovered that a neighboring galaxy -- the Large Magellanic Cloud (LMC) -- appears to have formed with an old stellar halo, similar to how our very own Milky Way formed.



The oldest and most metal-poor Milky Way stars form a spherical halo where they move about like atoms in a hot gas, which in turn prompts two major formation scenarios of our galaxy: extended hierarchical accretion and rapid collapse. RR Lyrae stars, which are found both in the Milky Way and the LMC, are excellent tracers of old and metal-poor populations.

By measuring the movement of 43 RR Lyrae stars in the inner regions of the LMC, the team determined that a moving hot, metal-poor, old halo also exists in the LMC, suggesting that the Milky Way and smaller, more irregular galaxies like the LMC have similar early formation histories.


The research, titled "Kinematic Evidence for an Old Stellar Halo in the Large Magellanic Cloud," is featured in the Sept. 12 issue of Science.

Kem Cook of Livermore’s Institute of Geophysics and Planetary Physics and part of the Massive Compact Halo Objects (MACHO) team, which previously discovered the RR Lyrae stars in the LMC, noted that they are an easily identified tracer of an old, metal-poor population. The LMC is more than 160,000 light-years away from our galaxy.

"The bottom line is that the Large Magellanic Cloud seems to have had a similar early formation history as the Milky Way," Cook said. "It created a spherical component that is not rotationally supported, but the stars have high random velocities, like a hot gas."

Cook, along with scientists from Universidad Pontifica Catolica in Chile, the European Southern Observatory, Columbia Astrophysics Laboratory and the Mount Stromlo Observatory at The Australian National University, observed the LMC RR Lyrae stars in January 2003 and measured the radial velocity dispersion using the European Southern Obervatories VLT.

The large-velocity dispersion of the LMC RR Lyrae stars scales to the Milky Way RR Lyrae star’s velocity dispersion and indicates that metal-poor old stars in the LMC are distributed in a halo population.

Models of halo formation by accretion indicate that these old objects formed in small satellite galaxies that were subsequently accreted (eaten up) by the galaxy. Meanwhile, models of halo formation by dissipational collapse indicate that the halo formed rapidly before the disk collapsed. The researchers applied these models to smaller galaxies and observed a halo population in the LMC by its oldest objects.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>