Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why infrared astronomy is a hot topic


ESA’s Herschel spacecraft will collect infrared radiation from some of the coldest and most distant objects in the Universe. But why are observations of infrared light so special?

The Universe is full of radiation of all types but most of this does not reach us here on Earth because our atmosphere blocks out many wavelengths of radiation, but lets others through.

Fortunately for life on Earth, the atmosphere blocks out harmful, high-energy radiation like X-rays, gamma rays and most ultraviolet rays. It also blocks out most infrared radiation, except for a few narrow wavelength ranges that make it through to ground-based infrared telescopes.

Our atmosphere causes another problem - it radiates strongly in the infrared itself, often putting out more infrared radiation than the object in space being observed. This is why ground-based infrared observatories are usually placed near the summits of high mountains to get above as much of the atmosphere as possible.

This is why it is so important to put observatories into space, to get above our atmosphere which prevents so much of this valuable information from reaching us.

ISO unveils the hidden rings of Andromeda

So why is it so important to see in infrared?

Many of the things scientists want to observe in space are far too cold to radiate at optical or shorter wavelengths, but radiate strongly in infrared, for example, the cold atoms and molecules that drift in interstellar space. We need to study these raw materials to understand how stars form and evolve.

“By observing in the infrared we can study how things get formed, the very early steps, because formation processes very often happen in cool and dusty places,” explains Göran Pilbratt, ESA’s Herschel Project Scientist.

In our own Solar System, cold objects such as comets and asteroids reveal most of their characteristics to us in infrared light.

Other things of great interest to astronomy are hidden within or behind vast clouds of gas and dust. These clouds hide stars and planets in early stages of formation and the powerful cores of active galaxies.

Our view is blocked because the dust grains are very effective at scattering or absorbing visible light. Longer infrared wavelengths can get through the dust.

The future is extremely bright for infrared astronomy and, in the next decade, you will hear a lot about ESA discoveries in infrared astronomy!

Monica Talevi | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>