Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why infrared astronomy is a hot topic

11.09.2003


ESA’s Herschel spacecraft will collect infrared radiation from some of the coldest and most distant objects in the Universe. But why are observations of infrared light so special?



The Universe is full of radiation of all types but most of this does not reach us here on Earth because our atmosphere blocks out many wavelengths of radiation, but lets others through.

Fortunately for life on Earth, the atmosphere blocks out harmful, high-energy radiation like X-rays, gamma rays and most ultraviolet rays. It also blocks out most infrared radiation, except for a few narrow wavelength ranges that make it through to ground-based infrared telescopes.


Our atmosphere causes another problem - it radiates strongly in the infrared itself, often putting out more infrared radiation than the object in space being observed. This is why ground-based infrared observatories are usually placed near the summits of high mountains to get above as much of the atmosphere as possible.

This is why it is so important to put observatories into space, to get above our atmosphere which prevents so much of this valuable information from reaching us.

ISO unveils the hidden rings of Andromeda

So why is it so important to see in infrared?

Many of the things scientists want to observe in space are far too cold to radiate at optical or shorter wavelengths, but radiate strongly in infrared, for example, the cold atoms and molecules that drift in interstellar space. We need to study these raw materials to understand how stars form and evolve.

“By observing in the infrared we can study how things get formed, the very early steps, because formation processes very often happen in cool and dusty places,” explains Göran Pilbratt, ESA’s Herschel Project Scientist.

In our own Solar System, cold objects such as comets and asteroids reveal most of their characteristics to us in infrared light.

Other things of great interest to astronomy are hidden within or behind vast clouds of gas and dust. These clouds hide stars and planets in early stages of formation and the powerful cores of active galaxies.

Our view is blocked because the dust grains are very effective at scattering or absorbing visible light. Longer infrared wavelengths can get through the dust.

The future is extremely bright for infrared astronomy and, in the next decade, you will hear a lot about ESA discoveries in infrared astronomy!

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaSC/SEMX9PZO4HD_exploring_0.html

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>