Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Opening Up the Dark Side of the Universe


Physicists in the UK are ready to start construction of a major part of an advanced new experiment, designed to search for elusive gravitational waves. They are already part of two experiments: the UK/German GEO 600 project and the US LIGO experiment (Laser Interferometer Gravitational-Wave Observatory), both in their commissioning phases. By bringing GEO 600 technology to LIGO, they and their German colleagues from the Albert Einstein Institute are now set to become full partners in Advanced LIGO, a more sensitive observatory that once fully operational should be able to detect a gravitational wave event a day.

Gravitational waves should be created when massive objects, such as black holes or neutron stars in astronomical binaries interact and spiral-in towards, and eventually collide with, each other emitting a strong burst of gravitational radiation or when a star, at the end of its long evolutionary phase, collapses due to its own gravity resulting in a supernova with the core forming a neutron star or a black hole. Rapidly rotating neutron stars or pulsars with tiny
deformities in their spherical shape, and newly formed neutron stars, are continuous emitters of the radiation. There should also be background "noise" made up from a population of such events and, possibly, phase transitions in the early Universe and the echoes of the Big Bang itself.

First predicted by Einstein’s Theory of Relativity, gravitational waves have never been observed, but indirect evidence of their existence has been obtained by measuring the effect of their emission by a binary pulsar system (two neutron stars orbiting each other). The observed effect was found to match predictions.

Professor Ken Strain, Institute for Gravitational Research at the University of Glasgow, explains "Gravitational waves are ripples in the fabric of space-time, produced by the acceleration of mass. Because the gravitational interaction is very weak, large masses and high accelerations are needed to produce gravitational waves of significant amplitude. These are the very conditions that occur during violent astrophysical events such as supernovae or when neutron stars coalesce."

The detection and study of gravitational radiation will be of great scientific importance. It will open up a new window on the universe through which may come unique information about a variety of astrophysical systems -supernova explosions, black hole formation, pulsars and coalescing compact binary objects. It is also possible that totally unexpected discoveries will be made, in much the same way as has occurred in radio and x-ray astronomy.

Gravity waves regularly pass through the Earth unnoticed, as Dr Chris Castelli of Birmingham University explains: "As gravity waves pass through, they contract or expand by tiny amounts in a plane perpendicular to the direction they are moving, usually too small to notice. If we split a laser signal and send it off in perpendicular directions before bouncing the light back off test masses and recombining it, we can measure whether the light has travelled the same distance in each direction. If a gravity wave has interacted with the system, it will have changed the relative distance between the test masses forming the two perpendicular arms."

The longer the baseline of the detector, the more sensitive it is. However, as practical constraints limit the size of experimental facilities, GEO 600 has come up with new ways of improving sensitivity using triple suspended test masses, advanced optics and specialised control electronics. Sharing this technology with Advanced LIGO is granting full partner status to GEO 600 and will contribute to enhancing LIGO to Advanced LIGO, with a factor of ten increase in sensitivity.

Mr Justin Greenhalgh, of CCLRC Rutherford Appleton Laboratory explains the benefits of the GEO 600 technology: "The UK team will provide quadruple pendulum suspensions developed from the GEO 600 triple design. The extra stage provides enhanced isolation against seismic noise and noise from the control systems that are required to allow Advanced LIGO to achieve extreme sensitivity at low observation frequencies. The suspension design incorporates ultra-low mechanical loss techniques pioneered in GEO 600 to meet the exacting requirements set by the science goals for Advanced LIGO"

Grants totalling £8.6 million have been made by the Particle Physics and Astronomy Research Council (PPARC) for Glasgow and Birmingham Universities to carry out the work. Much of the construction work, and overall management of the UK programme,
will be done by CCLRC Rutherford Appleton Laboratory.

Julia Maddock | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>