Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sudbury Neutrino Observatory reports new measurements – thanks to Table Salt!


A common table commodity that people sprinkle on their food every day is the main ingredient in new measurements by scientists at the Sudbury Neutrino Observatory (SNO).

In a presentation on Sunday September 7th, at TAUP2003, a major scientific conference in Seattle, Washington, new measurements were reported that strongly confirm the original SNO results announced in 2001 and 2002 that solved the "Solar Neutrino Problem" and go much further in establishing the properties of neutrinos that cause them to change from one type to another in transit to the Earth from the Sun.

"We have moved to a precision phase of the measurements." says Queen’s University Professor Art McDonald, SNO Project Director through the first two phases of the project. "These measurements are essential to define a new theory of elementary particles required to explain finite neutrino masses and their ability to change types. Some of the simplest proposed theories have already been ruled out."

To accomplish the new measurements, the SNO Collaboration added 2 tonnes of high-purity table salt (NaCl) to the 1000 tonnes of heavy water at the heart of the detector, sited 2 kilometres underground in near Sudbury, Canada. Two-thirds of the electron-type neutrinos produced by nuclear reactions in the core of the Sun are observed to change to muon- or tau-type neutrinos before reaching the Earth. "These new solid results are obtained with a ‘pinch of salt’, providing three times better sensitivity to the muon and tau neutrinos." Says Professor Tony Noble, Director of the SNO Institute that administers the project on behalf of an international collaboration of 130 scientists from 15 institutions in Canada, the U.S. and the U.K. The observations in recent years that neutrinos change from one type to another, implying that they have mass, has led to great interest in the scientific community.

These new findings require a modification of the most basic theories for elementary particles and have provided a strong confirmation that our theories of energy generation in the Sun are very accurate. New experiments to provide further information on neutrino properties and the origin of the Dark Matter in the Universe are being developed. These include projects that could be sited in the new SNOLAB being developed near the SNO underground site. Such measurements could provide insight into fundamental questions such as why our Universe is composed of matter rather than anti-matter. The answers to such questions require a further understanding of elementary particle theory and further insight into the evolution of the Universe.

To pursue such questions, the Sudbury Neutrino Observatory is about to enter a third experimental phase with new sensitivity. Professor Hamish Robertson of the University of Washington, Seattle, US Co-spokesman and Interim SNO Director for this transition phase, says "We have developed a half-kilometre-long array of ultra-clean detectors to be placed in the heavy water after the salt is removed in September. These detectors are precision instruments that will give us further insight into neutrino properties."

Professor Nick Jelley of Oxford University, co-spokesman of the UK SNO Collaboration states, "As we have moved forward with ever increasing sensitivity, we are learning more about neutrinos and their place in the Universe. It is very exciting to be performing these ground-breaking measurements with our unique experimental sensitivity."

Julia Maddock | alfa

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>