Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sudbury Neutrino Observatory reports new measurements – thanks to Table Salt!

10.09.2003


A common table commodity that people sprinkle on their food every day is the main ingredient in new measurements by scientists at the Sudbury Neutrino Observatory (SNO).

In a presentation on Sunday September 7th, at TAUP2003, a major scientific conference in Seattle, Washington, new measurements were reported that strongly confirm the original SNO results announced in 2001 and 2002 that solved the "Solar Neutrino Problem" and go much further in establishing the properties of neutrinos that cause them to change from one type to another in transit to the Earth from the Sun.

"We have moved to a precision phase of the measurements." says Queen’s University Professor Art McDonald, SNO Project Director through the first two phases of the project. "These measurements are essential to define a new theory of elementary particles required to explain finite neutrino masses and their ability to change types. Some of the simplest proposed theories have already been ruled out."



To accomplish the new measurements, the SNO Collaboration added 2 tonnes of high-purity table salt (NaCl) to the 1000 tonnes of heavy water at the heart of the detector, sited 2 kilometres underground in near Sudbury, Canada. Two-thirds of the electron-type neutrinos produced by nuclear reactions in the core of the Sun are observed to change to muon- or tau-type neutrinos before reaching the Earth. "These new solid results are obtained with a ‘pinch of salt’, providing three times better sensitivity to the muon and tau neutrinos." Says Professor Tony Noble, Director of the SNO Institute that administers the project on behalf of an international collaboration of 130 scientists from 15 institutions in Canada, the U.S. and the U.K. The observations in recent years that neutrinos change from one type to another, implying that they have mass, has led to great interest in the scientific community.

These new findings require a modification of the most basic theories for elementary particles and have provided a strong confirmation that our theories of energy generation in the Sun are very accurate. New experiments to provide further information on neutrino properties and the origin of the Dark Matter in the Universe are being developed. These include projects that could be sited in the new SNOLAB being developed near the SNO underground site. Such measurements could provide insight into fundamental questions such as why our Universe is composed of matter rather than anti-matter. The answers to such questions require a further understanding of elementary particle theory and further insight into the evolution of the Universe.

To pursue such questions, the Sudbury Neutrino Observatory is about to enter a third experimental phase with new sensitivity. Professor Hamish Robertson of the University of Washington, Seattle, US Co-spokesman and Interim SNO Director for this transition phase, says "We have developed a half-kilometre-long array of ultra-clean detectors to be placed in the heavy water after the salt is removed in September. These detectors are precision instruments that will give us further insight into neutrino properties."

Professor Nick Jelley of Oxford University, co-spokesman of the UK SNO Collaboration states, "As we have moved forward with ever increasing sensitivity, we are learning more about neutrinos and their place in the Universe. It is very exciting to be performing these ground-breaking measurements with our unique experimental sensitivity."

Julia Maddock | alfa

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>