Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chandra ’hears’ a black hole

10.09.2003


NASA’s Chandra X-ray Observatory detected sound waves, for the first time, from a super-massive black hole. The "note" is the deepest ever detected from an object in the universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics.


Photo: Sound waves from the black hole in the Perseus cluster (NASA/CXC/IoA/A.Fabian et al.)



The black hole resides in the Perseus cluster, located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster’s central black hole.

"We have observed the prodigious amounts of light and heat created by black holes, now we have detected the sound," said Andrew Fabian of the Institute of Astronomy (IoA) in Cambridge, England, and leader of the study.


In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance, because the note is 57 octaves lower than middle-C (by comparison a typical piano contains only about seven octaves). At a frequency over a million, billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the universe.

"The Perseus sound waves are much more than just an interesting form of black hole acoustics," said Steve Allen, also of the IoA and a co-investigator in the research. "These sound waves may be the key in figuring out how galaxy clusters, the largest structures in the universe, grow," Allen said.

For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays should cool, and the dense central gas should cool the fastest. The pressure in this cool central gas should then fall, causing gas further out to sink in towards the galaxy, forming trillions of stars along the way. Scant evidence has been found for such a flow of cool gas or star formation. This forced astronomers to invent several different ways to explain why the gas contained in clusters remained hot, and, until now, none of them was satisfactory.

Heating caused by a central black hole has long been considered a good way to prevent cluster gas from cooling. Although jets have been observed at radio wavelengths, their effect on cluster gas was unclear since this gas is only detectable in X-rays, and early X-ray observations did not have Chandra’s ability to find detailed structure.

Previous Chandra observations of the Perseus cluster showed two vast, bubble-shaped cavities in the cluster gas extending away from the central black hole. Jets of material pushing back the cluster gas have formed these X-ray cavities, which are bright sources of radio waves. They have long been suspected of heating the surrounding gas, but the mechanism was unknown. The sound waves, seen spreading out from the cavities in the recent Chandra observation, could provide this heating mechanism.

A tremendous amount of energy is needed to generate the cavities, as much as the combined energy from 100 million supernovae. Much of this energy is carried by the sound waves and should dissipate in the cluster gas, keeping the gas warm and possibly preventing a cooling flow. If so, the B-flat pitch of the sound wave, 57 octaves below middle-C, would have remained roughly constant for about 2.5 billion years.

Perseus is the brightest cluster of galaxies in X-rays, and therefore was a perfect Chandra target for finding sound waves rippling through the hot cluster gas. Other clusters show X-ray cavities, and future Chandra observations may yet detect sound waves in these objects.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2003/03-152.html
http://chandra.nasa.gov
http://chandra.harvard.edu

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>