Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermometer For Plasma

08.09.2003


St. Petersburg researchers have designed an original thermometer for fast-moving electrons in thermonuclear reactors. The laser beam in this device is used to instantly determine the temperature of burning hot plasma, at frequencies required for precise diagnostics.



This device is a further step forward to controlled nuclear fusion. The device will help researchers to get precise information about energy distribution of hot plasma electrons inside the tokamac – the most promising current prototype of the future thermonuclear reactor.

The new diagnostics system is based on the original laser construction designed by scientists at the Open Joint-Stock Company “Control Modules. Laser Beam Engineering and Technology” (MULTITEX) and the Ioffe Physical & Engineering Institute, Russian Academy of Sciences. It allows them - figuratively speaking - to apply a thermometer to plasma burning at temperatures in the millions of degrees – the substance tortiled by magnetic fields, where heavy hydrogen tritium interacts to liberate tremendous amounts of energy.


“The only known way to take temperature of hot plasma electrons is the so-called Thomson scattering, says one of the authors of the device, Andrei Alexeev, Ph. D. (Physical and Mathematical Sciences).

"The photon flux scatters upon interaction with electrons, the scattering being different depending on their energy. Therefore, the scattering allows to judge about the temperature of electronic component of plasma. Unfortunately, efficiency of this interaction is not high, so the light signal turns out to be weak.

"The light signal is hard to notice against a background of natural luminescence of burning hot plasma, it is like the gas-jet light against a background of bright sunshine. However, it is necessary to know the temperature at any moment –it is impossible to understand what is happening inside the fire-spitting tokamac without precise diagnostics.”

To solve the task, the researchers used the laser source of light. They have changed the laser device construction: the plasmic object was placed inside the laser resonator.

“It was sufficient to place the mirrors of the laser device at both sides of the tokomac in such a way that the beam is alternately reflected from them and intensified, and crosses the plasma several times instead of one time, continues Andrei Alexeev.

"Such construction is called multiple-pass. As a result, we expect that the laser formed by optical components and nontransmitting mirrors located at different sides of plasma in the course of charge will generate the emanation impulse possessing the energy which is high enough for being registered.”

It is interesting to note that the researchers assure that such laser construction may be used only for peaceful purposes. Its emanation capacity is high only within the bounds of a resonator, i.e. between the mirrors. Once in hypothetical case the nontransmitting mirror is replaced by a partially transmitting mirror, the energy will “flow out” of the optical resonator and the laser impulse intensity will drop down drastically.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>