Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA astronomers detect plasma at black hole

05.09.2003


UCLA astronomers report they have detected remarkably stormy conditions in the hot plasma being pulled into the monstrous black hole residing at the center of our Milky Way galaxy, 26,000 light years away. This detection of the hot plasma is the first in an infrared wavelength, where most of the disturbed plasma’s energy is emitted, and was made using the 10-meter Keck II Telescope at the W.M. Keck Observatory in Hawaii.



Plasma is a hot, ionized, gas-like matter -- a fourth state of matter, distinct from solids, liquids and gases -- believed to make up more than 99 percent of the visible universe, including the stars, galaxies and the vast majority of the solar system.

"Previous observations at radio and X-ray wavelengths suggested that the black hole is dining on a calm stream of plasma that experiences glitches only 2 percent of the time," said Andrea Ghez, professor of physics and astronomy at UCLA, who headed the research team. "Our infrared detection shows for the first time that the black hole’s meal is more like the Grand Rapids, in which energetic glitches from shocked gas are occurring almost continually."


"I see this as a real breakthrough," said Mark Morris, a UCLA professor of physics and astronomy, who worked with Ghez. "It’s a big leap, not just an incremental advance. The infrared is precisely where we need to look to learn what the black hole is eating. In the infrared, you see it all. The black hole’s dirty laundry is hanging right there for us to see. We’re peering deep down inside this tumultuous region."

"One of the big mysteries in studies of the black hole at the center of our galaxy is why the surrounding gas is emitting so little light compared to black holes at the center of other galaxies," Ghez said. "We now have a completely new and continuously open window to study the material that is falling onto the black hole at the center of the Milky Way."

The past two years, Ghez and her colleagues used adaptive optics at the Keck Observatory to get high-resolution images at wavelengths between the short near-infrared, where stars dominate, and the mid-infrared, where dust dominates.

"There’s a history of false detections of this source in the infrared," Ghez said. "At short wavelengths, it’s challenging because there are so many stars. In the mid-infrared, it’s difficult because there is so much dust at the center of the galaxy. Our observation was successful because it was made between these two problematic regimes with an adaptive optics system. This type of observation only became possible last year."

"We are highly confident in our detection," Ghez added. "We have a bright source at exactly the right spot, right on the black hole, and with properties that are unlike the stars around it; the source emits much more strongly at long wavelengths than the stars, and the source doesn’t move, while the stars move at huge velocities. What’s exciting and important is not just that we detected the plasma, but that it varies dramatically in intensity from week-to-week, day-to-day, and even within a single hour. It’s as if we have been watching the black hole breathing."

Black holes are collapsed stars so dense that nothing can escape their gravitational pull, not even light. Black holes cannot be seen directly, but their influence on nearby stars is visible, and provides a signature, Ghez said. The black hole, with a mass more than three million times that of our sun, is in the constellation of Sagittarius.

Since 1995, Ghez has been using the W.M. Keck Observatory’s 10-meter Keck I Telescope atop Mauna Kea in Hawaii -- the world’s largest optical and infrared telescope -- to study the galactic center and the movement of 200 nearby stars. She has made measurements using a technique she refined called infrared speckle interferometry, and for the last few years, has used adaptive optics, an even more sophisticated technique, which enables her to see the region more clearly.

"The Keck Observatory is one of the best facilities in the world for this research," Ghez said.

The astronomers know the location of the black hole so precisely "that it’s like someone in Los Angeles who can identify where someone in Boston is standing to within the width of her hand, if you scale it out to 26,000 light years," Ghez said. The galactic center is located due south in the summer sky.

The black hole at the center of our galaxy came into existence billions of years ago, perhaps as very massive stars collapsed at the end of their life cycles and coalesced into a single, supermassive object.

For decades, the emission at the galactic center could be detected only in radio wavelengths, which do not reveal the variations in intensity. "The radio is partially opaque," Morris said. The emission was detected for the first time recently in the X-way wavelengths, but it is important to now have the detection between these two wavelength extremes, where details of the plasma can be seen. In the X-ray, activity can be seen only about 5 percent of the time, while in the infrared, it can be seen continually, Morris said.

The astronomers are learning what is causing gas to emit radiation as it approaches and enters the black hole. Ghez and her colleagues will continue to study the supermassive black hole at a variety of near infrared wavelengths.

Ghez’s co-authors include Morris; UCLA physics and astronomy professor Eric Becklin, who identified the center of the Milky Way in 1968; California Institute of Technology research scientist Keith Matthews, and UCLA graduate student Shelley Wright.


###
The research is federally funded by an individual grant to the National Science Foundation, the National Science Foundation’s Center for Adaptive Optics, and the Packard Foundation. It has been submitted for publication to the Astrophysical Journal Letters and is available at http://xxx.lanl.gov/abs/astro-ph/0309076. Ghez also will present her findings Sept. 24 in an invited talk at the 4th Cologne-Bonn-Zermatt Symposium on The Dense Interstellar Medium in Galaxies in Zermatt, Switzerland.

Stuart Wolpert | EurekAlert!
Further information:
http://www.astro.ucla.edu/research/galcenter/

More articles from Physics and Astronomy:

nachricht Spiral arms: not just in galaxies
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>