Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA astronomers detect plasma at black hole

05.09.2003


UCLA astronomers report they have detected remarkably stormy conditions in the hot plasma being pulled into the monstrous black hole residing at the center of our Milky Way galaxy, 26,000 light years away. This detection of the hot plasma is the first in an infrared wavelength, where most of the disturbed plasma’s energy is emitted, and was made using the 10-meter Keck II Telescope at the W.M. Keck Observatory in Hawaii.



Plasma is a hot, ionized, gas-like matter -- a fourth state of matter, distinct from solids, liquids and gases -- believed to make up more than 99 percent of the visible universe, including the stars, galaxies and the vast majority of the solar system.

"Previous observations at radio and X-ray wavelengths suggested that the black hole is dining on a calm stream of plasma that experiences glitches only 2 percent of the time," said Andrea Ghez, professor of physics and astronomy at UCLA, who headed the research team. "Our infrared detection shows for the first time that the black hole’s meal is more like the Grand Rapids, in which energetic glitches from shocked gas are occurring almost continually."


"I see this as a real breakthrough," said Mark Morris, a UCLA professor of physics and astronomy, who worked with Ghez. "It’s a big leap, not just an incremental advance. The infrared is precisely where we need to look to learn what the black hole is eating. In the infrared, you see it all. The black hole’s dirty laundry is hanging right there for us to see. We’re peering deep down inside this tumultuous region."

"One of the big mysteries in studies of the black hole at the center of our galaxy is why the surrounding gas is emitting so little light compared to black holes at the center of other galaxies," Ghez said. "We now have a completely new and continuously open window to study the material that is falling onto the black hole at the center of the Milky Way."

The past two years, Ghez and her colleagues used adaptive optics at the Keck Observatory to get high-resolution images at wavelengths between the short near-infrared, where stars dominate, and the mid-infrared, where dust dominates.

"There’s a history of false detections of this source in the infrared," Ghez said. "At short wavelengths, it’s challenging because there are so many stars. In the mid-infrared, it’s difficult because there is so much dust at the center of the galaxy. Our observation was successful because it was made between these two problematic regimes with an adaptive optics system. This type of observation only became possible last year."

"We are highly confident in our detection," Ghez added. "We have a bright source at exactly the right spot, right on the black hole, and with properties that are unlike the stars around it; the source emits much more strongly at long wavelengths than the stars, and the source doesn’t move, while the stars move at huge velocities. What’s exciting and important is not just that we detected the plasma, but that it varies dramatically in intensity from week-to-week, day-to-day, and even within a single hour. It’s as if we have been watching the black hole breathing."

Black holes are collapsed stars so dense that nothing can escape their gravitational pull, not even light. Black holes cannot be seen directly, but their influence on nearby stars is visible, and provides a signature, Ghez said. The black hole, with a mass more than three million times that of our sun, is in the constellation of Sagittarius.

Since 1995, Ghez has been using the W.M. Keck Observatory’s 10-meter Keck I Telescope atop Mauna Kea in Hawaii -- the world’s largest optical and infrared telescope -- to study the galactic center and the movement of 200 nearby stars. She has made measurements using a technique she refined called infrared speckle interferometry, and for the last few years, has used adaptive optics, an even more sophisticated technique, which enables her to see the region more clearly.

"The Keck Observatory is one of the best facilities in the world for this research," Ghez said.

The astronomers know the location of the black hole so precisely "that it’s like someone in Los Angeles who can identify where someone in Boston is standing to within the width of her hand, if you scale it out to 26,000 light years," Ghez said. The galactic center is located due south in the summer sky.

The black hole at the center of our galaxy came into existence billions of years ago, perhaps as very massive stars collapsed at the end of their life cycles and coalesced into a single, supermassive object.

For decades, the emission at the galactic center could be detected only in radio wavelengths, which do not reveal the variations in intensity. "The radio is partially opaque," Morris said. The emission was detected for the first time recently in the X-way wavelengths, but it is important to now have the detection between these two wavelength extremes, where details of the plasma can be seen. In the X-ray, activity can be seen only about 5 percent of the time, while in the infrared, it can be seen continually, Morris said.

The astronomers are learning what is causing gas to emit radiation as it approaches and enters the black hole. Ghez and her colleagues will continue to study the supermassive black hole at a variety of near infrared wavelengths.

Ghez’s co-authors include Morris; UCLA physics and astronomy professor Eric Becklin, who identified the center of the Milky Way in 1968; California Institute of Technology research scientist Keith Matthews, and UCLA graduate student Shelley Wright.


###
The research is federally funded by an individual grant to the National Science Foundation, the National Science Foundation’s Center for Adaptive Optics, and the Packard Foundation. It has been submitted for publication to the Astrophysical Journal Letters and is available at http://xxx.lanl.gov/abs/astro-ph/0309076. Ghez also will present her findings Sept. 24 in an invited talk at the 4th Cologne-Bonn-Zermatt Symposium on The Dense Interstellar Medium in Galaxies in Zermatt, Switzerland.

Stuart Wolpert | EurekAlert!
Further information:
http://www.astro.ucla.edu/research/galcenter/

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>