Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA astronomers detect plasma at black hole

05.09.2003


UCLA astronomers report they have detected remarkably stormy conditions in the hot plasma being pulled into the monstrous black hole residing at the center of our Milky Way galaxy, 26,000 light years away. This detection of the hot plasma is the first in an infrared wavelength, where most of the disturbed plasma’s energy is emitted, and was made using the 10-meter Keck II Telescope at the W.M. Keck Observatory in Hawaii.



Plasma is a hot, ionized, gas-like matter -- a fourth state of matter, distinct from solids, liquids and gases -- believed to make up more than 99 percent of the visible universe, including the stars, galaxies and the vast majority of the solar system.

"Previous observations at radio and X-ray wavelengths suggested that the black hole is dining on a calm stream of plasma that experiences glitches only 2 percent of the time," said Andrea Ghez, professor of physics and astronomy at UCLA, who headed the research team. "Our infrared detection shows for the first time that the black hole’s meal is more like the Grand Rapids, in which energetic glitches from shocked gas are occurring almost continually."


"I see this as a real breakthrough," said Mark Morris, a UCLA professor of physics and astronomy, who worked with Ghez. "It’s a big leap, not just an incremental advance. The infrared is precisely where we need to look to learn what the black hole is eating. In the infrared, you see it all. The black hole’s dirty laundry is hanging right there for us to see. We’re peering deep down inside this tumultuous region."

"One of the big mysteries in studies of the black hole at the center of our galaxy is why the surrounding gas is emitting so little light compared to black holes at the center of other galaxies," Ghez said. "We now have a completely new and continuously open window to study the material that is falling onto the black hole at the center of the Milky Way."

The past two years, Ghez and her colleagues used adaptive optics at the Keck Observatory to get high-resolution images at wavelengths between the short near-infrared, where stars dominate, and the mid-infrared, where dust dominates.

"There’s a history of false detections of this source in the infrared," Ghez said. "At short wavelengths, it’s challenging because there are so many stars. In the mid-infrared, it’s difficult because there is so much dust at the center of the galaxy. Our observation was successful because it was made between these two problematic regimes with an adaptive optics system. This type of observation only became possible last year."

"We are highly confident in our detection," Ghez added. "We have a bright source at exactly the right spot, right on the black hole, and with properties that are unlike the stars around it; the source emits much more strongly at long wavelengths than the stars, and the source doesn’t move, while the stars move at huge velocities. What’s exciting and important is not just that we detected the plasma, but that it varies dramatically in intensity from week-to-week, day-to-day, and even within a single hour. It’s as if we have been watching the black hole breathing."

Black holes are collapsed stars so dense that nothing can escape their gravitational pull, not even light. Black holes cannot be seen directly, but their influence on nearby stars is visible, and provides a signature, Ghez said. The black hole, with a mass more than three million times that of our sun, is in the constellation of Sagittarius.

Since 1995, Ghez has been using the W.M. Keck Observatory’s 10-meter Keck I Telescope atop Mauna Kea in Hawaii -- the world’s largest optical and infrared telescope -- to study the galactic center and the movement of 200 nearby stars. She has made measurements using a technique she refined called infrared speckle interferometry, and for the last few years, has used adaptive optics, an even more sophisticated technique, which enables her to see the region more clearly.

"The Keck Observatory is one of the best facilities in the world for this research," Ghez said.

The astronomers know the location of the black hole so precisely "that it’s like someone in Los Angeles who can identify where someone in Boston is standing to within the width of her hand, if you scale it out to 26,000 light years," Ghez said. The galactic center is located due south in the summer sky.

The black hole at the center of our galaxy came into existence billions of years ago, perhaps as very massive stars collapsed at the end of their life cycles and coalesced into a single, supermassive object.

For decades, the emission at the galactic center could be detected only in radio wavelengths, which do not reveal the variations in intensity. "The radio is partially opaque," Morris said. The emission was detected for the first time recently in the X-way wavelengths, but it is important to now have the detection between these two wavelength extremes, where details of the plasma can be seen. In the X-ray, activity can be seen only about 5 percent of the time, while in the infrared, it can be seen continually, Morris said.

The astronomers are learning what is causing gas to emit radiation as it approaches and enters the black hole. Ghez and her colleagues will continue to study the supermassive black hole at a variety of near infrared wavelengths.

Ghez’s co-authors include Morris; UCLA physics and astronomy professor Eric Becklin, who identified the center of the Milky Way in 1968; California Institute of Technology research scientist Keith Matthews, and UCLA graduate student Shelley Wright.


###
The research is federally funded by an individual grant to the National Science Foundation, the National Science Foundation’s Center for Adaptive Optics, and the Packard Foundation. It has been submitted for publication to the Astrophysical Journal Letters and is available at http://xxx.lanl.gov/abs/astro-ph/0309076. Ghez also will present her findings Sept. 24 in an invited talk at the 4th Cologne-Bonn-Zermatt Symposium on The Dense Interstellar Medium in Galaxies in Zermatt, Switzerland.

Stuart Wolpert | EurekAlert!
Further information:
http://www.astro.ucla.edu/research/galcenter/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>