Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers spark new paths in radio-isotope transmutation

29.08.2003


Scientific breakthrough in the transmutation of isotopes



Collaboration between the European Commission’s Joint Research Centre (JRC) DG, the University of Jena (Germany), the University of Strathclyde (UK), Imperial College (UK), and the Rutherford Appleton Laboratory (UK) has led to the transmutation of long-lived radioactive iodine-129 into short-lived iodine-128 using very high intensity laser radiation. Until recently, transmutation could only be achieved in nuclear reactors or particle accelerators.

Transmutation – making use of nuclear reactions that will change very long-lived radioactive elements into less radioactive or shorter-lived products – is a concept for nuclear waste management under development in several countries. Very long-lived iodine-129 has a half-life of 15.7 million years, high radiotoxicity and mobility, and is an important constituent of nuclear waste – making it one of the primary risk considerations in the nuclear industry. It currently has to be sheathed in glass and buried deep underground. Handling of iodine is also difficult as it is corrosive and volatile. Through the laser-induced photo-transmutation process, this long-lived isotope was transmuted first to the short-lived isotope iodine-128, which then decays with a half-life of 25 minutes to the stable inert gas xenon-128. The experiments demonstrate the feasibility of transmuting radioactive iodine-129; limitations to scaling up this technique may be the high energy consumption of the laser and the low cross sections of the elements in question, resulting in low transmutation efficiencies.


The JRC Institute for Transuranium Elements in Karlsruhe, Germany first proposed use of laser radiation to split radioactive elements in 1990 but lasers of sufficient power were not available. Now a novel amplification technique (chirped pulse amplification) has boosted intensities to some 1020 W/cm2 – the equivalent of focusing the entire energy output of the sun onto an area of just 0.1 mm2. By focusing such a laser onto a tantalum metal target, the beam generates a plasma with temperatures of ten billion degrees (1010K) – comparable to those that occurred one second after the ‘big bang’ believed to have created the universe. The electrons in the plasma generate gamma radiation intense enough to induce nuclear reactions in the iodine target.

Through collaboration with the University of Strathclyde, experiments were performed with the giant pulse VULCAN laser at the Rutherford Appleton Laboratory. And, in collaboration with the University of Jena, the experiment was performed with a high repetition rate tabletop laser. This work opens the way to transmutation experiments on a laboratory scale – rather than at large-scale facilities – using much cheaper and more accessible instrumentation.

Further research is necessary to investigate the potential for scaling up the process to deal with the volumes of iodine-129 produced by the nuclear industry. From the present experiments, much useful basic information on transmutation reactions can be obtained. Nuclear cross section data on iodine was obtained for the first time for the photonuclear reaction described here. Laser induced nuclear reactions may also be used to transmute other elements. Indeed, the laser-induced fission of uranium-238 and thorium-232 had been demonstrated earlier through the above collaboration.

Joseph Magill | alfa
Further information:
http://itu.jrc.cec.eu.int/

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>