Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers spark new paths in radio-isotope transmutation

29.08.2003


Scientific breakthrough in the transmutation of isotopes



Collaboration between the European Commission’s Joint Research Centre (JRC) DG, the University of Jena (Germany), the University of Strathclyde (UK), Imperial College (UK), and the Rutherford Appleton Laboratory (UK) has led to the transmutation of long-lived radioactive iodine-129 into short-lived iodine-128 using very high intensity laser radiation. Until recently, transmutation could only be achieved in nuclear reactors or particle accelerators.

Transmutation – making use of nuclear reactions that will change very long-lived radioactive elements into less radioactive or shorter-lived products – is a concept for nuclear waste management under development in several countries. Very long-lived iodine-129 has a half-life of 15.7 million years, high radiotoxicity and mobility, and is an important constituent of nuclear waste – making it one of the primary risk considerations in the nuclear industry. It currently has to be sheathed in glass and buried deep underground. Handling of iodine is also difficult as it is corrosive and volatile. Through the laser-induced photo-transmutation process, this long-lived isotope was transmuted first to the short-lived isotope iodine-128, which then decays with a half-life of 25 minutes to the stable inert gas xenon-128. The experiments demonstrate the feasibility of transmuting radioactive iodine-129; limitations to scaling up this technique may be the high energy consumption of the laser and the low cross sections of the elements in question, resulting in low transmutation efficiencies.


The JRC Institute for Transuranium Elements in Karlsruhe, Germany first proposed use of laser radiation to split radioactive elements in 1990 but lasers of sufficient power were not available. Now a novel amplification technique (chirped pulse amplification) has boosted intensities to some 1020 W/cm2 – the equivalent of focusing the entire energy output of the sun onto an area of just 0.1 mm2. By focusing such a laser onto a tantalum metal target, the beam generates a plasma with temperatures of ten billion degrees (1010K) – comparable to those that occurred one second after the ‘big bang’ believed to have created the universe. The electrons in the plasma generate gamma radiation intense enough to induce nuclear reactions in the iodine target.

Through collaboration with the University of Strathclyde, experiments were performed with the giant pulse VULCAN laser at the Rutherford Appleton Laboratory. And, in collaboration with the University of Jena, the experiment was performed with a high repetition rate tabletop laser. This work opens the way to transmutation experiments on a laboratory scale – rather than at large-scale facilities – using much cheaper and more accessible instrumentation.

Further research is necessary to investigate the potential for scaling up the process to deal with the volumes of iodine-129 produced by the nuclear industry. From the present experiments, much useful basic information on transmutation reactions can be obtained. Nuclear cross section data on iodine was obtained for the first time for the photonuclear reaction described here. Laser induced nuclear reactions may also be used to transmute other elements. Indeed, the laser-induced fission of uranium-238 and thorium-232 had been demonstrated earlier through the above collaboration.

Joseph Magill | alfa
Further information:
http://itu.jrc.cec.eu.int/

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>