Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers hunt Martian water from Earth

26.08.2003


As Mars makes its closest approach in almost 60,000 years, two Australian astronomers have used the United Kingdom Infrared Telescope (UKIRT) in Hawaii to look for signs that the planet once had liquid water – and so may have hosted life.



Dr. Jeremy Bailey of the Anglo-Australian Observatory and the Australian Centre for Astrobiology (ACA) at Macquarie University in Sydney, and Sarah Chamberlain, a PhD student at the ACA, have produced what is Bailey says is "perhaps the sharpest image of Mars ever made from the ground."

But the real gold lies in the spectral data they obtained.


The scientists are applying the same remote-sensing technique that geologists use to map minerals on the Earth’s surface.

Minerals absorb some wavelengths from sunshine and reflect others. Each mineral has its own ‘spectral signature’ – the set of wavelengths it reflects.

"We’re looking particularly for the signatures of minerals, such as hydrated clay minerals, that would indicate the past presence of liquid water," said Bailey.

Similar prospecting by NASA’s Mars Odyssey spacecraft has shown that there is a vast amount of hydrogen below the surface of Mars. The consensus has been that this is probably water ice.

But did Mars ever have liquid water? And if so, how much? It’s still contentious.

NASA’s Mars Global Surveyor has found sizeable deposits of a mineral called crystalline (grey) hematite, which forms only in the presence of liquid water.

NASA’s two Mars Exploration Rovers, due to land on the Martian surface in January 2004, and the UK lander Beagle 2, due to land in December this year, will also be looking for signs that Mars has had liquid water.

"While spacecraft can get up close, ground-based observations still have a role, as they allow us to use larger and more powerful instruments," said Bailey.

Helen Sim | alfa
Further information:
http://outreach.jach.hawaii.edu/
http://aca.mq.edu.au/
http://www.aao.gov.au/

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>