Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Close encounters with Mars

25.08.2003


On 27 August 2003, Mars is less than 56 million kilometres away - approaching closer to our planet than it has done in over 60 000 years.



About the same time as this closest approach, Mars Express passes the halfway mark of its journey, in terms of distance along its trajectory. On 1 September 2003, as it hurtles through space at 10 800 kilometres per hour, the spacecraft will have covered over 242 million kilometres, half of the total of 485 million kilometres needed to arrive at Mars. Note that the distance travelled is not the same as the distance between the Earth and Mars.

At first glance, you might think that this time would be better than three months ago to launch a spacecraft to Mars, given the advantage of a shorter route. However, planning interplanetary journeys is more complicated than just taking account of the distances.


Playing catch up

This is because the planets are also moving in their respective orbits. If you want your spacecraft to rendezvous with another object in space, you must carefully time its launch so that the orbits overlap at some point in the future.

Imagine the Solar System as an athletics racetrack. If you were watching a 400-metres race from the centre of the track and wanted to intercept one of the runners taking part, you could simply chase the runner you want to catch. If you are fast enough, you might eventually catch up but only after using a lot of energy and travelling a long way.

A much better way to catch your athlete is simply to walk across the centre to the other side of the circular track. It is a much shorter distance and you use a lot less energy and time getting there. You calculate your walk so that you arrive at the other side of the track at the same time as they do. Too early and you are waiting for them. Too late and you have missed them completely - you would have to wait one lap until they came around again.

In spaceflight, straight-line paths do not exist for the same reason. All planets move in long, curved paths around the Sun in either circular or elliptical orbits. To reach Mars, the Mars Express probe is now on a trajectory, an arc-shaped path, which gradually makes its way outwards to intersect the orbit of Mars about six months after launch.

It is no coincidence then that the fleet of spaceprobes now travelling to Mars was launched within weeks of each other in 2003. Even with the relatively close positions of the planets, which would cut journey times, scientists still needed to calculate the shortest trajectory between the orbits of Earth and Mars. It makes sense that this occurs around the time of closest approach. Once the shortest path has been established, you can then work back to get the actual launch dates.

All in a row

Though Mars will be closest to Earth on 27 August 2003, ’opposition’ comes on 28 August 2003. Astronomers call the moment when the Sun, Earth, and Mars form a straight line opposition. Since we are closer to the Sun than Mars, this is also when we are overtaking Mars in our respective orbits.

At a distance of exactly 55 758 006 kilometres from Earth, the Red Planet will be brighter than Jupiter and all the stars in the night sky, outshone only by Venus and the Moon. You will not see anything gigantic in the sky, but you will be able to see Mars’s distinctive red-orange colour. Amateur astronomers with good-sized telescopes will be able to see some of the planet’’s features, such as the polar ice cap, dark surface features, and perhaps even storm clouds.

Interesting as this closest approach is, professional astronomers will be looking forward to even better things. Probes that orbit the planet have studied Mars and some spacecraft have even landed on it. Later this year, our knowledge will increase dramatically when the flotilla of spacecraft, including Europe’s Mars Express, approaches the Red Planet.

Mars Express will help to answer the questions of whether there has been water, and possibly life, on Mars. It will be mapping the Martian subsurface, surface, atmosphere, and ionosphere from orbit and by conducting observations and experiments on the surface.



Monica Talevi | alfa
Further information:
http://www.esa.int/export/SPECIALS/Mars_Express/SEMILAZO4HD_0.html

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>