Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major flares are predictable on far-away stars, analysis of radio observations reveals

25.08.2003


For the first time, astronomers are able to predict when major flares--enormous explosions that shoot hot gases into space--will erupt on stars outside our solar system, according to research to be published in an upcoming issue of the Astrophysical Journal.



The research is based on data from the longest-running continuous radio survey of flares produced by two types of binary systems, each containing a pair of stars under the influence of each other’s gravity. Stars in both binary systems, located about 95 light years from our solar system, are like a younger version of our Sun. "Studying the flares on these stars can help us understand more about how life evolved on Earth because they indicate the kind of environment that was bombarding our planet during an earlier age," says Mercedes Richards, professor of astronomy and astrophysics at Penn State University and the leader of the survey team.

During their 5-year-long observations, the researchers used the Green Bank Interferometer in West Virginia to continuously monitor radio waves produced by flares on pairs of stars as they circle each other like partners in a dance, regularly eclipsing each other when viewed from Earth. They studied two systems of such stars, one known as "The Demon Star," or "Beta Persei," which is the brightest and closest eclipsing binary pair in the sky. It contains a hot, blue star along with a cool, orange-colored star that is like our Sun but a bit more active. The other system, known as "V711 Tauri" to indicate its location in the constellation Taurus, also contains relatively cool stars like our Sun, one orange-colored and the other slightly hotter and yellow-colored.


Cool, Sun-like stars have an outer convective zone that produces a magnetic field. The pattern of a star’s flares reveal how its magnetic field is changing. "We were trying to discover the magnetic cycle within these stars by detecting a pattern in their strongest flares," Richards explains. The strength of flares in a binary pair is related to the age and speed of rotation of the cooler star. "Because we discovered that these flares occur at regular intervals, we now can predict accurately when future flares will occur," she says.

Because the strength of the Sun’s magnetic activity is relatively weak, astronomers have needed to accumulate close to 100 years of observations in order to get enough data to determine the Sun’s cycle of flare strength. The binary stars the team studied are younger than our Sun and are spinning about 10 times faster, so their flares are about 10 times more powerful and the astronomers were able to discover their interval pattern much more quickly.

The team’s observations of these two objects lasted from January 1995 until October 2000, when the Green Bank Interferometer was shut down. "Our continuous monitoring demonstrated that Beta Per and V711 Tau have active cycles and inactive cycles," Richards says. "This fact would not have been established if the systems had only been monitored sporadically. We could never be absolutely sure that no flares occurred at certain times unless we were monitoring the system all the time."

Richards and her collaborators used two independent statistical techniques to find out how often radio flares occur in these systems. They found that flares occur every 50 to 120 days in both systems. The survey also suggested a longer cycle of flares that lasted more than 500 days, or 1.4 years, with a pattern of active flaring and then very little flaring activity, but this long-term cycle could not be confirmed by the statistical analysis because tthe survey was not long enough to yield results that reach the usual criterion for statistical significance.

When Richards divided the long-term flare cycle by the rotation period of the cool star, she realized that the flaring cycles in the two binary systems may be related to magnetic cycles like the 11-year sunspot cycle on the Sun. "Now that we have begun to understand more about the flaring cycles on other stars, we may be able to better understand flaring in general, including the 11-year cycle of flares from our Sun, which regularly disrupts communications satellites on Earth," Richards says.

In addition to Richards, the research team includes Elizabeth Waltman of the Naval Research Laboratory, Frank Ghigo of the National Radio Astronomy Observatory, and Donald Richards of Penn State.


CONTACTS:
Mercedes Richards: 814-865-0150, mtr@astro.psu.edu
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

CREDITS:

Continuous monitoring of radio flares requires the availability of a dedicated telescope like the Green Bank Interferometer--a facility of the National Science Foundation that was operated during the collection of these data by the National Radio Astronomy Observatory with funding from the United States Naval Observatory, the Naval Research Laboratory, the National Radio Astronomy Observatory, and NASA’s High Energy Astrophysics Program. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Richards received funding for this research from the Air Force Office of Scientific Research, the National Science Foundation, and NASA.


Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>