Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major flares are predictable on far-away stars, analysis of radio observations reveals

25.08.2003


For the first time, astronomers are able to predict when major flares--enormous explosions that shoot hot gases into space--will erupt on stars outside our solar system, according to research to be published in an upcoming issue of the Astrophysical Journal.



The research is based on data from the longest-running continuous radio survey of flares produced by two types of binary systems, each containing a pair of stars under the influence of each other’s gravity. Stars in both binary systems, located about 95 light years from our solar system, are like a younger version of our Sun. "Studying the flares on these stars can help us understand more about how life evolved on Earth because they indicate the kind of environment that was bombarding our planet during an earlier age," says Mercedes Richards, professor of astronomy and astrophysics at Penn State University and the leader of the survey team.

During their 5-year-long observations, the researchers used the Green Bank Interferometer in West Virginia to continuously monitor radio waves produced by flares on pairs of stars as they circle each other like partners in a dance, regularly eclipsing each other when viewed from Earth. They studied two systems of such stars, one known as "The Demon Star," or "Beta Persei," which is the brightest and closest eclipsing binary pair in the sky. It contains a hot, blue star along with a cool, orange-colored star that is like our Sun but a bit more active. The other system, known as "V711 Tauri" to indicate its location in the constellation Taurus, also contains relatively cool stars like our Sun, one orange-colored and the other slightly hotter and yellow-colored.


Cool, Sun-like stars have an outer convective zone that produces a magnetic field. The pattern of a star’s flares reveal how its magnetic field is changing. "We were trying to discover the magnetic cycle within these stars by detecting a pattern in their strongest flares," Richards explains. The strength of flares in a binary pair is related to the age and speed of rotation of the cooler star. "Because we discovered that these flares occur at regular intervals, we now can predict accurately when future flares will occur," she says.

Because the strength of the Sun’s magnetic activity is relatively weak, astronomers have needed to accumulate close to 100 years of observations in order to get enough data to determine the Sun’s cycle of flare strength. The binary stars the team studied are younger than our Sun and are spinning about 10 times faster, so their flares are about 10 times more powerful and the astronomers were able to discover their interval pattern much more quickly.

The team’s observations of these two objects lasted from January 1995 until October 2000, when the Green Bank Interferometer was shut down. "Our continuous monitoring demonstrated that Beta Per and V711 Tau have active cycles and inactive cycles," Richards says. "This fact would not have been established if the systems had only been monitored sporadically. We could never be absolutely sure that no flares occurred at certain times unless we were monitoring the system all the time."

Richards and her collaborators used two independent statistical techniques to find out how often radio flares occur in these systems. They found that flares occur every 50 to 120 days in both systems. The survey also suggested a longer cycle of flares that lasted more than 500 days, or 1.4 years, with a pattern of active flaring and then very little flaring activity, but this long-term cycle could not be confirmed by the statistical analysis because tthe survey was not long enough to yield results that reach the usual criterion for statistical significance.

When Richards divided the long-term flare cycle by the rotation period of the cool star, she realized that the flaring cycles in the two binary systems may be related to magnetic cycles like the 11-year sunspot cycle on the Sun. "Now that we have begun to understand more about the flaring cycles on other stars, we may be able to better understand flaring in general, including the 11-year cycle of flares from our Sun, which regularly disrupts communications satellites on Earth," Richards says.

In addition to Richards, the research team includes Elizabeth Waltman of the Naval Research Laboratory, Frank Ghigo of the National Radio Astronomy Observatory, and Donald Richards of Penn State.


CONTACTS:
Mercedes Richards: 814-865-0150, mtr@astro.psu.edu
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

CREDITS:

Continuous monitoring of radio flares requires the availability of a dedicated telescope like the Green Bank Interferometer--a facility of the National Science Foundation that was operated during the collection of these data by the National Radio Astronomy Observatory with funding from the United States Naval Observatory, the Naval Research Laboratory, the National Radio Astronomy Observatory, and NASA’s High Energy Astrophysics Program. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Richards received funding for this research from the Air Force Office of Scientific Research, the National Science Foundation, and NASA.


Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>