Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Granular materials not so puzzling after all, physicists find

25.08.2003


Understanding the physics of granular materials is important in industries that handle and process large amounts of the materials, such as pills and powders in the pharmaceutical and food industries and sand in the construction business.



But the problem of how to model granular materials has perplexed physicists. In particular, they’d like to better understand how the temperature within an assemblage of granular material affects the system’s dynamics. That understanding will help scientists determine whether the same thermodynamic principles that apply to systems at equilibrium also apply to systems that are far from equilibrium, such as living organisms.

In a paper to be published in the Aug. 21 issue of the journal Nature, a multinational team that includes University of Michigan physicist Franco Nori describes experiments in which the team devised an unusual "thermometer" and used it to test the soundness of the temperature concept in a continuously shaken container of tiny beads.


Temperature measurements actually are a reflection of how excited individual particles in a material are, be they molecules of air or grains of sand. In a gas, for instance, molecules vibrate and constantly collide with one another like extremely bouncy rubber balls. If the gas was trapped in a box, the microscopic motion would never stop and the temperature would remain constant. This so-called equilibrium state is possible because no loss of energy occurs in the molecules’ chaotic dancing.

In the work described in the Nature paper, the researchers explored the question of whether temperature can be similarly defined for systems that are not at equilibrium, especially those in which energy is dissipated during collisions. If it can, that means that equilibrium thermodynamic concepts can be generalized to far-from-equilibrium situations.

The question has practical implications for understanding natural phenomena such as the formation of order from disorder (a process known as pattern formation) and the extraction of motion out of randomness (biological Brownian motors). For these non-equilibrium situations, the lack of a definition of temperature and related parameters has prevented scientists from completely understanding the systems involved.

The researchers used an experimental set-up that they compare to a pinball machine, with balls moving around in a closed space. In a standard pinball machine, however, the balls are launched one at a time and bounce from one obstacle to the next. In the experimental system, thousands of tiny beads move almost imperceptibly due to the gentle shaking of the container in which they are held, colliding with each other and with the container walls. Because the beads are not perfectly elastic, energy is dissipated during these collisions. Only the external vibration of the container maintains the beads’ chaotic motion; if the container isn’t constantly shaken, the beads quickly stop moving.

In this experimental model of a non-equilibrium system, the researchers used a device called a torsion oscillator to act as a thermometer. The torsion oscillator---a wire with a cone-shaped probe at the end---was immersed in the container of beads. When the container was shaken, the beads bombarded the probe, causing the wire to oscillate back and forth like a clock spring.

By looking at the resulting motion of the wire, the scientists were able to determine whether the measured "temperature" followed the rules one would expect in an equilibrium energy conserving system ---a system in which energy is not dissipated in collisions. To their surprise, they found that temperature did follow the expected rules, leading them to conclude that even for a dissipative system, a few parameters---such as temperature---can be used to extract essential information concealed in the disordered motion of billions of particles.

In addition to Nori of the Institute of Physical and Chemical Research (RIKEN) in Japan and the Center for Theoretical Physics at the University of Michigan, the research team included: Gianfranco D’Anna and Patrick Mayor of the Ecole Polytechnique Federale de Lausanne in Lausanne, Switzerland; Alain Barrat of the Universite de Paris-Sud in Paris, France; Vittorio Loreto of the Center for Statistical Mechanics and Complexity in Rome, Italy; and Franco Nori of the Institute of Physical and Chemical Research (RIKEN) in Japan and the.

The researchers hope their results will stimulate new ideas in the description of non-equilibrium physics.


###

Nancy Ross Flanigan | EurekAlert!
Further information:
http://www-personal.engin.umich.edu/~nori/
http://www.riken.go.jp/engn/r-world/research/lab/frontier/quantum/digital/index.html
http://igahpse.epfl.ch/htc/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>