Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Granular materials not so puzzling after all, physicists find

25.08.2003


Understanding the physics of granular materials is important in industries that handle and process large amounts of the materials, such as pills and powders in the pharmaceutical and food industries and sand in the construction business.



But the problem of how to model granular materials has perplexed physicists. In particular, they’d like to better understand how the temperature within an assemblage of granular material affects the system’s dynamics. That understanding will help scientists determine whether the same thermodynamic principles that apply to systems at equilibrium also apply to systems that are far from equilibrium, such as living organisms.

In a paper to be published in the Aug. 21 issue of the journal Nature, a multinational team that includes University of Michigan physicist Franco Nori describes experiments in which the team devised an unusual "thermometer" and used it to test the soundness of the temperature concept in a continuously shaken container of tiny beads.


Temperature measurements actually are a reflection of how excited individual particles in a material are, be they molecules of air or grains of sand. In a gas, for instance, molecules vibrate and constantly collide with one another like extremely bouncy rubber balls. If the gas was trapped in a box, the microscopic motion would never stop and the temperature would remain constant. This so-called equilibrium state is possible because no loss of energy occurs in the molecules’ chaotic dancing.

In the work described in the Nature paper, the researchers explored the question of whether temperature can be similarly defined for systems that are not at equilibrium, especially those in which energy is dissipated during collisions. If it can, that means that equilibrium thermodynamic concepts can be generalized to far-from-equilibrium situations.

The question has practical implications for understanding natural phenomena such as the formation of order from disorder (a process known as pattern formation) and the extraction of motion out of randomness (biological Brownian motors). For these non-equilibrium situations, the lack of a definition of temperature and related parameters has prevented scientists from completely understanding the systems involved.

The researchers used an experimental set-up that they compare to a pinball machine, with balls moving around in a closed space. In a standard pinball machine, however, the balls are launched one at a time and bounce from one obstacle to the next. In the experimental system, thousands of tiny beads move almost imperceptibly due to the gentle shaking of the container in which they are held, colliding with each other and with the container walls. Because the beads are not perfectly elastic, energy is dissipated during these collisions. Only the external vibration of the container maintains the beads’ chaotic motion; if the container isn’t constantly shaken, the beads quickly stop moving.

In this experimental model of a non-equilibrium system, the researchers used a device called a torsion oscillator to act as a thermometer. The torsion oscillator---a wire with a cone-shaped probe at the end---was immersed in the container of beads. When the container was shaken, the beads bombarded the probe, causing the wire to oscillate back and forth like a clock spring.

By looking at the resulting motion of the wire, the scientists were able to determine whether the measured "temperature" followed the rules one would expect in an equilibrium energy conserving system ---a system in which energy is not dissipated in collisions. To their surprise, they found that temperature did follow the expected rules, leading them to conclude that even for a dissipative system, a few parameters---such as temperature---can be used to extract essential information concealed in the disordered motion of billions of particles.

In addition to Nori of the Institute of Physical and Chemical Research (RIKEN) in Japan and the Center for Theoretical Physics at the University of Michigan, the research team included: Gianfranco D’Anna and Patrick Mayor of the Ecole Polytechnique Federale de Lausanne in Lausanne, Switzerland; Alain Barrat of the Universite de Paris-Sud in Paris, France; Vittorio Loreto of the Center for Statistical Mechanics and Complexity in Rome, Italy; and Franco Nori of the Institute of Physical and Chemical Research (RIKEN) in Japan and the.

The researchers hope their results will stimulate new ideas in the description of non-equilibrium physics.


###

Nancy Ross Flanigan | EurekAlert!
Further information:
http://www-personal.engin.umich.edu/~nori/
http://www.riken.go.jp/engn/r-world/research/lab/frontier/quantum/digital/index.html
http://igahpse.epfl.ch/htc/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>