Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA sees stardust storms heading for Solar System

20.08.2003


Until ten years ago, most astronomers did not believe stardust could enter our Solar System. Then ESA’’s Ulysses spaceprobe discovered minute stardust particles leaking through the Sun’s magnetic shield, into the realm of Earth and the other planets. Now, the same spaceprobe has shown that a flood of dusty particles is heading our way.



Since its launch in 1990, Ulysses has constantly monitored how much stardust enters the Solar System from the interstellar space around it. Using an on-board instrument called DUST, scientists have discovered that stardust can actually approach the Earth and other planets, but its flow is governed by the Sun’s magnetic field, which behaves as a powerful gate-keeper bouncing most of it back. However, during solar maximum - a phase of intense activity inside the Sun that marks the end of each 11-year solar cycle - the magnetic field becomes disordered as its polarity reverses. As a result, the Sun’s shielding power weakens and more stardust can sneak in.

What is surprising in this new Ulysses discovery is that the amount of stardust has continued to increase even after the solar activity calmed down and the magnetic field resumed its ordered shape in 2001.


Scientists believe that this is due to the way in which the polarity changed during solar maximum. Instead of reversing completely, flipping north to south, the Sun’s magnetic poles have only rotated at halfway and are now more or less lying sideways along the Sun’s equator. This weaker configuration of the magnetic shield is letting in two to three times more stardust than at the end of the 1990s. Moreover, this influx could increase by as much as ten times until the end of the current solar cycle in 2012.

The stardust itself is very fine - just one-hundredth of the width of a human hair. It is unlikely to have much effect on the planets but it is bound to collide with asteroids, chipping off larger dust particles, again increasing the amount of dust in the inner Solar System. On the one hand, this means that the solar panels of spacecraft may be struck more frequently by dust, eventually causing a gradual loss of power, and that space observatories looking in the plane of the planets may have to cope with the haze of more sunlight diffused by the dust.

On the other hand, this astronomical occurrence could offer a powerful new way to look at the icy comets in the Kuiper Belt region of the outer Solar System. Stardust colliding with them will chip off fragments that can be studied collectively with ESA’s forthcoming infrared space telescope, Herschel. This might provide vital insight into a poorly understood region of the Solar System, where the debris from the formation of the planets has accumulated.

Back down on Earth, everyone may notice an increase in the number of sporadic meteors that fall from the sky every night. These meteors, however, will be rather faint.

Astronomers still do not know whether the current stardust influx, apart from being favoured by the particular configuration of the Sun’s magnetic field, is also enhanced by the thickness of the interstellar clouds into which the Solar System is moving. Currently located at the edge of what astronomers call the local interstellar cloud, our Sun is about to join our closest stellar neighbour Alpha Centauri in its cloud, which is less hot but denser.

ESA’s Ulysses data make it finally possible to study how stardust is distributed along the path of the Solar System through the local galactic environment. However, as it takes over 70 thousand years to traverse a typical galactic cloud, no abrupt changes are expected in the short term.

Markus Landgraf | alfa
Further information:
http://www.esa.int/sci_mediacentre/release2003.html?release=36

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>