Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA sees stardust storms heading for Solar System

20.08.2003


Until ten years ago, most astronomers did not believe stardust could enter our Solar System. Then ESA’’s Ulysses spaceprobe discovered minute stardust particles leaking through the Sun’s magnetic shield, into the realm of Earth and the other planets. Now, the same spaceprobe has shown that a flood of dusty particles is heading our way.



Since its launch in 1990, Ulysses has constantly monitored how much stardust enters the Solar System from the interstellar space around it. Using an on-board instrument called DUST, scientists have discovered that stardust can actually approach the Earth and other planets, but its flow is governed by the Sun’s magnetic field, which behaves as a powerful gate-keeper bouncing most of it back. However, during solar maximum - a phase of intense activity inside the Sun that marks the end of each 11-year solar cycle - the magnetic field becomes disordered as its polarity reverses. As a result, the Sun’s shielding power weakens and more stardust can sneak in.

What is surprising in this new Ulysses discovery is that the amount of stardust has continued to increase even after the solar activity calmed down and the magnetic field resumed its ordered shape in 2001.


Scientists believe that this is due to the way in which the polarity changed during solar maximum. Instead of reversing completely, flipping north to south, the Sun’s magnetic poles have only rotated at halfway and are now more or less lying sideways along the Sun’s equator. This weaker configuration of the magnetic shield is letting in two to three times more stardust than at the end of the 1990s. Moreover, this influx could increase by as much as ten times until the end of the current solar cycle in 2012.

The stardust itself is very fine - just one-hundredth of the width of a human hair. It is unlikely to have much effect on the planets but it is bound to collide with asteroids, chipping off larger dust particles, again increasing the amount of dust in the inner Solar System. On the one hand, this means that the solar panels of spacecraft may be struck more frequently by dust, eventually causing a gradual loss of power, and that space observatories looking in the plane of the planets may have to cope with the haze of more sunlight diffused by the dust.

On the other hand, this astronomical occurrence could offer a powerful new way to look at the icy comets in the Kuiper Belt region of the outer Solar System. Stardust colliding with them will chip off fragments that can be studied collectively with ESA’s forthcoming infrared space telescope, Herschel. This might provide vital insight into a poorly understood region of the Solar System, where the debris from the formation of the planets has accumulated.

Back down on Earth, everyone may notice an increase in the number of sporadic meteors that fall from the sky every night. These meteors, however, will be rather faint.

Astronomers still do not know whether the current stardust influx, apart from being favoured by the particular configuration of the Sun’s magnetic field, is also enhanced by the thickness of the interstellar clouds into which the Solar System is moving. Currently located at the edge of what astronomers call the local interstellar cloud, our Sun is about to join our closest stellar neighbour Alpha Centauri in its cloud, which is less hot but denser.

ESA’s Ulysses data make it finally possible to study how stardust is distributed along the path of the Solar System through the local galactic environment. However, as it takes over 70 thousand years to traverse a typical galactic cloud, no abrupt changes are expected in the short term.

Markus Landgraf | alfa
Further information:
http://www.esa.int/sci_mediacentre/release2003.html?release=36

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>